
A Service-Oriented Approach for
Curriculum Planning and Validation

Matteo Baldoni1, Cristina Baroglio1, Ingo Brunkhorst2,
Elisa Marengo1, Viviana Patti1

1 Dipartimento di Informatica — Università degli Studi di Torino
c.so Svizzera, 185, I-10149 Torino (Italy)

{baldoni,baroglio,patti}@di.unito.it, elisa.mrng@gmail.com
2 L3S Research Center, University of Hannover

D-30539 Hannover, Germany
brunkhorst@l3s.de

Abstract. We present a service-oriented personalization system, set in
an educational framework, based on a semantic annotation of courses,
given at a knowledge level (what the course teaches, what is requested to
know for attending it in a profitable way). The system supports users in
building personalized curricula, formalized by means of an action theory.
It is also possible to verify the compliance of curricula w.r.t. a model,
expressing constraints at a knowledge level. For what concerns the first
task, classical planning techniques are adopted, which take into account
both the student’s initial knowledge and her learning goal. Instead, cur-
ricula validation is done against a model, formalized as a set of temporal
constraints. We have developed a prototype of the planning and valida-
tion services, by using -as reasoning engines- SWI-Prolog and the SPIN
model checker. Such services will be supplied and combined as plug-and-
play personalization services in the Personal Reader framework.

1 Introduction and Motivation

The birth of the Semantic Web brought along standard models, languages, and
tools for representing and dealing with machine-interpretable semantic descrip-
tions of Web resources, by giving a strong new impulse to research on personal-
ization. The introduction of machine-processable semantics makes the use of a
variety of reasoning techniques for implementing personalization functionalities
possible, widening the range of the forms that personalization can assume. So
far, reasoning in the Semantic Web is mostly reasoning about knowledge ex-
pressed in some ontology. However personalization may involve also other kinds
of reasoning and knowledge representation, that conceptually lie at the logic and
proof layers of the Semantic Web tower.

Moreover, the next Web generation promises to deliver Semantic Web Ser-
vices, that can be retrieved and combined in a way that satisfies the user. It opens
the way to many forms of service-oriented personalization. Web services provide
an ideal infrastructure for enabling interoperability among personalization appli-
cations and for constructing Plug&Play-like environments, where the user can



select and combine the kinds of services he or she prefers. Personalization can
be obtained by taking different approaches, e.g. by developing services that of-
fer personalization functionalities as well as by personalizing the way in which
services are selected, and composed in order to meet specific user’s requirements.

In the last years we carried on a research in the educational domain, by fo-
cussing on semantic web representations of learning resources and on automated
reasoning techniques for enabling different and complementary personalization
functionalities, e.g. curriculum sequencing [6, 7] and verification of the compli-
ance of a curriculum against some course design goals [5]. Our current aim is to
implement such results in an organic system, where different personalization ser-
vices, that exploit semantic web reasoning, can be combined to support the user
in the task of building a curriculum, based on learning resources that represent
courses.

While in early times learning resources were simply considered as “contents”,
strictly tied to the platform used for accessing them, recently, greater and greater
attention has been posed on the issue of re-use and of a cross-platform use of
educational contents. The proposed solution is to adopt a semantic annotation
of contents based on standard languages, e.g. RDF and LOM. Hereafter, we will
consider a learning resource as formed by educational contents plus semantic
meta-data, which supply information on the resources at a knowledge level, i.e.
on the basis of concepts taken from an ontology that describes the educational
domain. In particular we rely on the interpretation of learning resources as ac-
tions discussed in [6, 7]: the meta-data captures the learning objectives of the
learning resource and its pre-requisites. By doing so,one can rely on a classical
theory of actions and apply different reasoning methods -like planning- for build-
ing personalized curricula [6, 7]. The modeling of learning resources as actions
also enables the use of model checking techniques for developing a validation
service that detects if a user-given curriculum is compliant w.r.t an abstract
model, given as a set of constraints. In the following we present our achieve-
ments in the implementation of a Planning service and a Validation service that
can interoperate within the Personal Reader Framework [18].

Curriculum planning and validation offer a useful support in many practical
contexts and can be fruitfully combined for helping students or teaching insti-
tutions. Often a student knows what competency he/she would like to acquire
but has no knowledge of which courses will help him/her acquiring it. Moreover,
taking courses at different Universities is becoming more and more common in
Europe. As a consequence, building a curriculum might become a complicated
task for students, who must deal with an enormous set of courses across the
European countries, each described in different languages and on the basis of
different keywords.

The need of personalizing the sequencing of learning resource, w.r.t. the stu-
dent’s interests and context, has often to be combined with the ability to check
that the resulting curriculum complies against some abstract curricula specifi-
cation, which encodes the curricula-design goals expressed by the teachers or
by the institution offering the courses. Consider a student, who wants to build



a valid curriculum with the support of our automatic system. The student can
either use as a basis the suggestion returned by the system or he/she can design
the curriculum by hand, based on own criteria. In both cases a personalized
curriculum is obtained and can be given in input to the validation service for
checking the compliance against a curricula model. Curricula models specify
general rules for building learning paths and can be interpreted as constraints
designed by the University for guaranteeing the achievement of certain learning
goals. These constraints are to be expressed in terms of knowledge elements, and
maybe also on features that characterize the resources.

Consider now a university which needs to certify that the specific curricula,
that it offers for achieving a certain educational goal, and that are built upon the
courses offered locally by the university itself, respect some European guidelines.
In this case, we could, in fact, define the guidelines as a set of constraints at an
abstract level, i.e. as relations among a set of competencies which should be
offered in a way that meets some given scheme. At this point the verification
could be performed automatically, by means of a proper reasoner. Finally, the
automatic checking of compliance combined with curriculum planning could be
used for implementing processes like cooperation among institutes in curricula
design and integration, which are actually the focus of the so called Bologna
Process [15], promoted by the EU.

While SCORM [2] and Learning Design [19, 20] represent the most impor-
tant steps in the direction of managing and using e-learning based courses and
workflows among a group of actors participating in learning activities, most of
the available tools lack the machine-interpretable information about the learning
resources, and as a result they are not yet open for reasoning-based personaliza-
tion and automatic composition and verification. Given our requirements, it is a
natural choice to settle our implementation in the Personal Reader (PR) frame-
work. The PR relies on a service-oriented architecture enabling personalization,
via the use of semantic Personalization Services. Each service offers a differ-
ent personalization functionality, e.g. recommendations tailored to the needs of
specific users, pointers to related (or interesting or more detailed/general) infor-
mation, and so on. These semantic web services communicate solely based on
RDF documents.

The paper is organized as follows. Section 2 describes our approach to the
representation and reasoning about learning resources, curricula, and curricula
models. The implementation of the two services and their integration into the
PR Framework is discussed in section 3. We finish with conclusions and hints on
future work in Section 4.

2 Curricula representation and reasoning

Let us begin with the introduction of our approach to the representation of learn-
ing resources, curricula, and curricula models. The basic idea is to describe all
the different kinds of objects, that we need to tackle and that we will introduce
hereafter, on the basis of a set of predefined competencies, i.e. terms identifying



specific knowledge elements. We will use the two terms as synonyms. Competen-
cies can be thought of, and implemented, as concepts in a shared ontology. In
particular, for what concerns the application system described here, competen-
cies were extracted by means of a semi-automatic process and stored as an RDF
file (see Section 3.1 for details).

Given a predefined set of competencies, the initial knowledge of a student
can be represented as a set of such concepts. This set changes, typically it grows,
as the student studies and learns. In the same way, a user, who accesses a repos-
itory of learning resources, does it with the aim of finding materials that will
allow him/her to acquire some knowledge of interest. Also this knowledge, that
we identify by the term learning goal, can be represented as a set of knowl-
edge elements. The learning goal is to be taken into account in a variety of
tasks. For instance, the construction of a personalized curriculum is, actually,
the construction of a curriculum which allows the achievement of a learning goal
expressed by the user. In Section 3 we will describe a curricula planning service
for accomplishing this task.

2.1 Learning resources and curricula

A curriculum is a sequence of learning resources that are homogeneous in their
representation. Based on work in [6, 7], we rely on an action theory, and take the
abstraction of resources as simple actions. More specifically, a learning resource
is modelled as an action for acquiring some competencies (called effects). In
order to understand the contents supplied by a learning resource, the user is
sometimes required to own other competencies, that we call preconditions. Both
preconditions and effects can be expressed by means of a semantic annotation of
the learning resource [7]. In the following we will often refer to learning resources
as “courses” due to the particular application domain that we have considered
(university curricula).

As a simple example of “learning resource as action”, let us, then, report
the possible representation (in a classical STRIPS-like notation) of the course
“databases for biotechnologies” (db for biotech for short):

ACTION: db for biothec(),
PREREQ: relational db, EFFECTS: scientific db

The prequisites to this action is to have knowledge about relational databases.
Its effect is to supply knowledge about scientific databases.

Given the above interpretation of learning resources, a curriculum can be
interpreted as a plan, i.e. as a sequence of actions, whose execution causes tran-
sitions from a state to another, until some final state is reached. The initial state
contains all the competences that we suppose available before the curriculum
is taken, e.g. the knowledge that the student already has. This set can also be
empty. The final state is sometimes required to contain specific knowledge ele-
ments, for instance, all those that compose the user’s learning goal. Indeed, often
curricula are designed so to allow the achievement of a well-defined learning goal.



A transition between two states is due to the application of the action cor-
responding to a learning resource. Of course, for an action to be applicable, its
preconditions must hold in the state to which it should be applied. The applica-
tion of the action consists in an update of the state. We assume that competences
can only be added to states. Formally, we assume that the domain is monotonic.
The intuition behind this assumption is that the act of using a new resource will
never erase from the students’ memory the concepts acquired insofar. Knowledge
grows incrementally.

2.2 Curricula models

Curricula models consist in sets of constraints that specify desired properties of
curricula. Curricula models are to be defined on the basis of knowledge elements
as well as of learning resources (courses). In particular, we would like to restrict
the set of possible sequences of resources corresponding to curricula. This will
be done by imposing constraints on the order by which knowledge elements
are added to the states (e.g. “a knowledge element α is to be acquired before
a knowledge element β”), or by specifying some educational objectives to be
achieved, in terms of knowledge that must be contained in the final state (e.g. “a
knowledge element α must be acquired sooner or later”). Therefore, we represent
a curricula model as a set of temporal constraints. Being defined on knowledge
elements, a curricula model is independent from the specific resources that are
taken into account, for this reason, it can be reused in different contexts and it
is suitable to open and dynamic environments like the web.

The possibility of verifying the compliance of curricula to models is extremely
important in many applicative contexts, as explained by examples in the intro-
duction. In some cases these checks could be integrated into the curriculum
construction process; nevertheless, it is important to be able to perform the ver-
ification independently from the construction process. Let us consider again our
simple scenario concerning a university, which offers a set of curricula that are
proved to satisfy the guidelines given by the EU for a certain year. After a few
years, the EU guidelines change: our University has the need to check if the
curricula that it offers, still satisfy the guidelines, without rebuilding them.

A natural choice for representing temporal constraints on action paths is
linear-time temporal logic (LTL) [14]. This kind of logic allows to verify if a
property of interest is true for all the possible executions of a model (in our
case the specific curriculum). This is often done by means of model checking
techniques [12].

The curricula as we represent them are, actually, Kripke structures. Briefly,
a Kripke structure identifies a set of states with a transition relation that allows
passing from a state to another. In our case, the states contain the knowledge
items that are owned at a certain moment. Since the domain is monotonic (as
explained above we can assume that knowledge only grows), states will always
contain all the competencies acquired up to that moment. The transition relation
is given by the actions that are contained in the curriculum that is being checked.



It is possible to use the LTL logic to verify if a given formula holds starting from
a state or if it holds for a set of states.

For example, in order to specify in the curricula model constraints on what
to achieve, we can use the formula 3α, where 3 is the eventually operator.
Intuitively, such a formula expresses the fact that a set of knowledge elements
will be acquired sooner or later. Moreover, constraints concerning how to achieve
the educational objectives, such as “a knowledge element β cannot be acquired
before the knowledge element α is acquired”, can, for instance, be expressed by
the LTL temporal formula ¬β U α, where U is the weak until operator. Given
a set of knowledge elements to be acquired, such constraints specify a partial
ordering of the same elements.

2.3 Planning and Validation

Given a semantic annotation with preconditions and effects of the courses, clas-
sical planning techniques are exploited for creating personalized curricula, in
the spirit of the work in [6, 7]. Intuitively the idea is that, given a repository
of learning resources, which have been semantically annotated as described, the
user expresses a learning goal as a set of knowledge elements he/she would like
to acquire, and possibly also a set of already owned competencies. Then, the
system applies planning to build a sequence of learning resources that, read in
sequence, will allow him/her to achieve the goal.

The particular planning methodology that we implemented (see Section 3.3
for details) is a simple depth-first forward planning (an early prototype was
presented in [3]), where actions cannot be applied more than once. The algorithm
is simple:

1. Starting from the initial state, the set of applicable actions (those whose
preconditions are contained in the current state) is identified.

2. One of such actions is selected and its application is simulated leading to a
new state.

3. The new state is obtained by adding to the previous one the competencies
supplied as effects of the selected action.

4. The procedure is repeated until either the goal is reached or a state is
reached, in which no action can be applied and the learning goal is not
satisfied.

5. In the latter situation, backtracking is applied to look for another solution.

The procedure will eventually end because the set of possible actions is finite
and each is applied at most once. If the goal is achieved, the sequence of actions
that label the transitions leading from the initial to the final state is returned
as the resulting curriculum. If desired, the backtracking mechanism allows to
collect a set of alternative solutions to present to the user.

Besides the capability of automatically building personalized curricula, it is
also interesting to perform a set of verification tasks on curricula and curricula
models. The simplest form of verification consists in checking the soundness of



curricula which are built by hand by users themselves, reflecting their own per-
sonal interests and needs. Of course, not all sequences which can be built starting
from a set of learning resources are lawful. Learning dependencies, imposed by
courses themselves in terms of preconditions and effects, must be respected. In
other words, a course can appear at a certain point in a sequence only if it is
applicable at that point, therefore, there are no competency gaps. These implicit
“applicability constraints” capture precedences and dependencies that are innate
to the nature of the taught concepts. In particular, it is important to verify that
all the competencies, that are necessary to fully understand the contents, offered
by a learning resource, are introduced or available before that learning resource
is accessed. Usually, this verification, as stated in [13], is performed manually by
the learning designer, with hardly any guidelines or support.

Given the interpretation of resources as actions, the verification of the sound-
ness of a curriculum, w.r.t. the learning dependencies and the learning goal, can
be interpreted as an executability check of the curriculum. Also in this case, the
algorithm is simple:

1. Given an initial state, representing the knowledge available before the cur-
riculum is attended, a simulation is executed, in which all the actions in the
curriculum are (virtually) executed one after the other.

2. An action (representing a course) can be executed only if the current state
contains all the concepts that are in the course precondition. Intuitively, it
will be applied only if the student owns the notions that are required for
understanding the topics of the course.

3. If, at a certain point, an action that should be applied is not applicable be-
cause some precondition does not hold, the verification fails and the reasons
of such failure can be reported to the user.

4. Given that all the courses in the sequence can be applied, one after the other,
the final state that is reached must be compared with the learning goal of the
student: all the desired goal concepts must be achieved, so the corresponding
knowledge elements must be contained in the final state.

This latter task actually corresponds to another basic form of verification, i.e.
to check whether a (possibly hand-made) curriculum allows the achievement of
the desired learning goal. These forms of basic verifications can be accomplished
by the service described in Section 3.4.

Another interesting verification task consists in checking if a personalized
curriculum is valid w.r.t. a particular curricula model or, following Brusilovski’s
terminology, checking if the curriculum is compliant against the course design
goals [11]. Indeed, a personalized curriculum that is proved to be executable,
cannot automatically be considered as being valid w.r.t. a particular curricula
model. A curricula model, in fact, imposes further constraints on what to achieve
and how achieving it. We will return to this kind of verification in Section 3.4.



3 Implementation in the Personal Reader Framework

The Personal Reader Framework has been developed with the aim of offering a
uniform entry point for accessing the Semantic Web, and in particular Semantic
Web Services. Indeed it offers an environment for designing, implementing and
realizing Web content readers in a service-oriented approach, for a more detailed
description, see [18] (http://www.personal-reader.de/).

In applications based on the Personal Reader Framework, a user can se-
lect and combine —plug together— which personalized support he or she wants
to receive. The framework has already been used for developing Web Content
Readers that present online material in an embedded context [10, 1, 17]. Besides

Fig. 1. Personal Reader Framework Overview

a user-interface, as shown in figure 1, a Personal Reader application consists
of three types of services. Personalization services (PService) provide personal-
ization functionalities: they deliver personalized recommendations for content,
as requested by the user and obtained or extracted from the Semantic Web.
Syndication Services (SynService) allow for some interoperability with the other
services in the framework, e.g. for the discovery of the applications interfaces by
a portal. The Connector is a single central instance responsible for all the com-
munication between user interface and personalization services. It selects services
based on their semantic description and on the requirements by the SynService.
The Connector protects –by means of a public-key-infrastructure (PKI)– the
communication among the involved parties. It also supports the customization
and invocation of services and interacts with a user modelling service, called the
UMService, which maintains a central user model.



3.1 Metadata Description of Courses

In order to create the corpus of courses, we started with information collected
from an existing database of courses. We used the Lixto [9] tool to extract the
needed data from the web-pages provided by the HIS-LSF (http://www.his.de/)
system of the University of Hannover. This approach was chosen based on our
experience with Lixto in the Personal Publication Reader [10] project, where we
used Lixto for creating the publications database by crawling the publication
pages of the project partners. The effort to adapt our existing tool for the new
data source was only small. From the extracted metadata we created an RDF
document, containing course names, course catalog identifier, semester, number
of credit points, effects and preconditions, and the type of course, e.g. laboratory,
seminar or regular course with examinations in the end, as illustrated in Figure 2.

Fig. 2. An annotated course from the Hannover course database

The larger problem was that the quality of most of the information in the
database turned out to be insufficient, mostly due to inconsistencies in the de-
scription of prerequisites and effects of the courses. Additionally the corpus was
not annotated using a common set of terms, but authors and department sec-
retaries used a slightly varying vocabulary for each of their course descriptions,
instead of relying on a common classification system, like e.g. the ACM CCS for
computer science.

As a consequence, we focussed only on a subset of the courses (computer sci-
ence and engineering courses), and manually post-processed the data. Courses
are annotated with prerequisites and effects, that can be seen as knowledge con-
cepts or competences, i.e. ontology terms. After automatic extraction of effects



and preconditions, the collected terms were translated into proper English lan-
guage, synonyms were removed and annotations were corrected where necessary.
The resulting corpus had a total of 65 courses left, with 390 effects and 146
preconditions.

3.2 The User Interface and Syndication Service

User can select the
effects / knowledge
she wants to acquire

The system displays
the result in a way, so

the user can add,
remove, modify ele-
ments in her plan

The user can submit an
existing plan or re-use

one stored in her
profile

The system shows a
summary of the
validation step

PLANNER
SWI-Prolog

The system
validates the plan

The system
validates the plan

Generating the plan
from the request

The user can go back
to refine her plan

VALIDATION
SPIN model checker

VALIDATION
SPIN model checker

Fig. 3. The Actions supported by the User Interface

In our implementation, the user interface (see figure 3) is responsible for
identifying the user, presenting the user an interface to select the knowledge
she wants to acquire, and to display the results of the planning and validation
step, allowing further refinement of created plans. The creation of curriculum se-
quences and the validation are implemented as two independent Personalization
Services, the “Curriculum Planning PService”, and the “Curriculum Validation
PService”. Because of the plug-and-play nature of the infrastructure, the two
PServices can be used by other applications (SynServices) as well (Fig. 3). Also
possible is that PServices, which provide additional planning and validation ca-
pabilities can be used in our application. The current and upcoming future imple-
mentations of the Curriculum Planning and Validation Prototype are available
at http://semweb2.kbs.uni-hannover.de:8080/plannersvc.

3.3 The Curriculum Planning PService

In order to integrate the Planning Service as a plug-and-play personalization
service in the Personal Reader architecture we worked at embedding the Prolog
reasoner into a web service. Figure 4 gives an overview over the components
in the current implementation. The web service implements the Personalization



Fig. 4. Curriculum Planning Web Service

Service (PService [18]) interface, defined by the Personal Reader framework,
which allows for the processing of RDF documents and for inquiring about the
services capabilities. The Java-to-Prolog Connector runs the SWI-Prolog exe-
cutable in a sub-process; essentially it passes the RDF document containing the
request as-is to the Prolog system, and collects the results, already represented
as RDF.

The curriculum planning task itself is accomplished by a reasoning engine,
which has been implemented in SWI Prolog3. The interesting thing of using
SWI Prolog is that it contains a semantic web library allowing to deal with
RDF statements. Since all the inputs are sent to the reasoner in a RDF request
document, it actually simplifies the process of interfacing the planner with the
Personal Reader. In particular the request document contains: a) links to the
RDF document containing the database of courses, annotated with metadata,
b) a reference to the user’s context c) the user’s actual learning goal, i.e. a set
of knowledge concepts that the user would like to acquire, and that are part of
the domain ontology used for the semantic annotation of the actual courses. The
reasoner can also deal with information about credits provided by the courses,
when the user sets a credit constraint together with the learning goal.

Given a request, the reasoner runs the Prolog planning engine on the database
of courses annotated with prerequisites and effects. The initial state is set by
using information about the user’s context, which is maintained by the User
Modelling component of the PR. In fact such user’s context includes informa-
tion about what is considered as already learnt by the student (attended courses,
learnt concepts) and such information is included in the request document. The
Prolog planning engine has been implemented by using a classical depth-first
search algorithm [22]. This algorithm is extremely simple to implement in declar-
ative languages as Prolog.

3 http://www.swi-prolog.org/



At the end of the process, a RDF response document is returned as an output.
It contains a list of plans (sequences of courses) that fulfill the user’s learning
goals and profile. The maximum number of possible solutions can be set by the
user in the request document. Notice that further information stored in the user
profile is used at this stage for adapting the presentation of the solutions, here
simple hints are used to rank higher those plans that include topics that the user
has an expressed special interest in.

3.4 The Curriculum Validation PService

In order to verify if a curriculum is valid w.r.t. a curricula model, we adopt
model checking techniques, by using SPIN. To check a curriculum with SPIN,
this must be translated in the Promela language. Competencies are represented
as boolean variables. In the beginning, only those variables that represent the
initial knowledge of the student are true. Courses are implemented as actions
that can modify the value of the variables. Since our application domain is
monotonic, only those variables, whose value is false in the initial state, can be
modified.

The Promela program consists of two processes: one is named CurriculumVer-
ification and the other UpdateState. While the former contains a representation
of the curriculum itself, and simulates its execution, the latter contains the code
for updating the state (i.e. the set of competencies achieved so far) step by
step along the simulation of the execution of the curriculum. The two processes
communicate by means of two channels, attend and feedback. The notation at-
tend!courseName represents the fact that the course with name courseName is
to be attended. In this case the sender process is CurriculumVerification and the
receiver is UpdateState. UpdateState will check the preconditions of the course
in the current state and will send a feedback to CurriculumVerification after
updating the state. On the other hand, the notation feedback?feedbackMsg rep-
resents the possibility for the process Curriculum of receiving a feedback of kind
feedbackMsg from the process UpdateState.

Given these two processes, it is possible to perform a test, aimed at ver-
ifying the possible presence of competency gaps. This test is implemented as
a deadlock verification: if the sequence is correct w.r.t. the action theory, no
deadlock arises, otherwise a deadlock will be detected. The curricula model is to
be supplied apart, as a set of temporal logic formulas, possibly obtained by an
automatic translation process from a DCML representation. Notice that curric-
ula can contain branching points. The branching points are encoded by either
conditioned or non-deterministic if; each such if statement refers to a set of al-
ternative courses (e.g. languagesEnvironmentProg and programmingLanguages).
Depending on the course communicated by the channel attend, it updates the
state. The process continues until the message stop is communicated. Then the
learning goal is checked.

Let us see how to use the model checker to verify the temporal constraints
that make a curricula model. Model checking is the algorithmic verification of
the fact that a finite state system complies to its specification. In our case the



specification is given by the curricula model and consists of a set of temporal
constraints, while the finite state system is the curriculum to be verified.

SPIN allows to specify and verify every kind of LTL formulas and it also
allows to deal with curricula that at some points contain alternatives. This makes
the system suitable to more realistic application scenarios. In fact, for what
concerns curricula written by hand, users often do not have a clear mind and,
thus, it is difficult for them to write a single sequence. In the case of curricula
built by an automatic system, there are planners that are able to produce sets
of alternative solutions gathered in a tree structure.

The following are examples of constraints, expressed as LTL formulas, that
could be part of a curricula model:

(1) ¬jdbc U (sql ∧ relational algebra),
(2) ¬op systems U basis of prog,
(3) ¬basis of oo U basis of prog,
(4) 3basis of prog ⊃ 3basis of java prog,
(5) 3database,
(6) 3web services.

The first constraint means that before learning jdbc the student must own Knowl-
edge about sql and about relational algebra. The following two constraints are of
the same kind but involve different competencies. Constraint (4) means that if
the student acquires knowledge about “basis of programming”, he/she will also
have knowledge about “basis of java programming” but the two events are not
temporally related. Constraints (5) and (6) mean that soon or later knowledge
about databases and web services must be acquired.

4 Conclusion, Further and Related Works

In this work we have described the current state of the integration of semantic
personalization web services for Curriculum Planning and Validation within the
Personal Reader Framework. The goal of personalization is to create sequences of
courses that fit the specific context and the learning goal of individual students.
Despite some manual post-processing for fixing inconsistencies, we used real
information from the Hannover University database of courses for extracting the
meta-data. Currently the courses are annotated also by meta-data concerning
the schedule and location of courses, like for instance room-numbers, addresses
and teaching hours. As a further development, it would be interesting to let our
Curriculum Planning Service to make use also of such metadata in order to find
a solution that fits the desires and the needs of the user in a more complete way.

The Curriculum Planning Service has been integrated as a new plug-and-
play personalization service in the Personal Reader framework. In the current
implementation, the learning goal corresponds to a set of hard constraints; that
is to say that the planner returns only plans that satisfy them all. A different
choice would be to consider the constraints given by the goal as soft constraints,
and allow the return of plans which do satisfy the goal only partially. This



would be approapriate, for instance, in the case in which a student would like
to acquire a range of competencies of interest but it is not possible to build, on
top of a given repository of course descriptions, a curriculum for achieving them
all. Nevertheless, it would be possible to build a curriculum for achieving part
of them. In some circumstances, it would anyway be helpful for the student to
receive this information as a feedback. Of course, in this case many questions
arise, e.g. the issue of ranking the goals based on the actual interest of the
requestor, so to know what can possibly be discarded and what is mandatory.
From an implementation perspective, the spirit of the SOA infrustructure given
to the Personal Reader is, indeed, meant to easily allow extensions by adding
new Personalization Services. We can, therefore, think to develop and add a soft-
goal planning service, to be used in these circumstances. The new planner would
inherit the wrapping and interaction part from the current planning service but
implement an algorithm like for instance [16].

The Curriculum Validation Service has been designed. An early prototype of
the validation system based on the model checker SPIN has been developed [5]
and is currently being embedded in the same framework. The choice of relying
on SPIN, rather than developing a simpler and ad hoc checking system, is due
to the need of rapidly developing a prototype. For this reason we have decided
to rely on already exisiting and well-established technology. The engineering
of the developed services should be tailored to the specific kinds of constraint
that can be used to design the model. Analogous considerations can be done
for the planning algorithm. The one that has been used is the simplest that can
be thought of. Of course, there are many possible optimizations and extensions
(e.g. the adoption of soft goals mentioned above) that could be done, and many
algorithms are already available in the literature. Our choice has been motivated
by the desire of quickly testing our ideas rather than developing a system thought
for real use.

The Personal Reader Platform provides a natural framework for implement-
ing a service-oriented approach to personalization in the Semantic Web, allowing
to investigate how (semantic) web service technologies can provide a suitable in-
frastructure for building personalization applications, that consist of re-usable
and interoperable personalization functionalities. The idea of taking a service
oriented approach to personalization is quite new and was born within the per-
sonalization working group of the Network of Excellence REWERSE (Reasoning
on the Web with Rules and Semantics, http://rewerse.net).

Writing curricula models directly in LTL is not an easy task for the user.
For this reason, we have recently developed a graphical language, called DCML
(Declarative Curricula Model Language) [8, 4], inspired by DecSerFlow, the Declar-
ative Service Flow Language by van der Aalst and Pesic [23]. DCML allows to
express the temporal relations between the times of acquisition of the concepts.
The advantage of a graphical language is that drawing, rather than writing, con-
straints facilitates the user, who needs to represent curricula models, allowing
a general overview of the relations which exist between concepts. At the same
time, a rigorous and precise meaning is also given, due to the logic grounding of



the language. Moreover, in [4] we represent curricula as UML activity diagrams
and include the possibility of handling the concurrent attending of courses. Also
in this case curricula can be translated in Promela programs so that it becomes
possible to perform all the kinds of verification that we have described.

DCML, besides being a graphical language, has also a textual representation.
We are currently working at an integration of this new more sophisticated solu-
tion into the Personal Reader Framework by implementing an automatic system
for translating DCML textual representations into LTL, for translating curricula
(activity diagrams) in Promela, and then run the checks.

Another recent proposal for automatizing the competency gap verification is
done in [21] where an analysis of pre- and post-requisite annotations of the Learn-
ing Objects (LO), representing the learning resources, is proposed. In this ap-
proach, whenever an error will be detected by the validation phase, a correction
engine will be activated. This engine will use a “Correction Model” to produce
suggestions for correcting the wrong curriculum, by means of a reasoning-by-
cases approach. The suggestions will, then, be presented to the course devel-
oper, who is in charge to decide which ones to adopt (if any). Once a curriculum
will have been corrected, it will have to be validated again, because the cor-
rections might introduce new errors. Melia and Pahl’s proposal is inspired by
the CocoA system [11], that allows to perform the analysis and the consistency
check of static web-based courses. Competency gaps are checked by a prerequi-
site checker for linear courses, simulating the process of teaching with an overlay
student model. Pre- and post-requisites are represented by knowledge elements.

Acknowledgement This research has partially been funded by the European
Commission and by the Swiss Federal Office for Education and Science within
the 6th Framework Programme project REWERSE number 506779 (cf. http:
//rewerse.net).

References

1. F. Abel, I. Brunkhorst, N. Henze, D. Krause, K. Mushtaq, P. Nasirifar, and
K. Tomaschweski. Personal reader agent: Personalized access to configurable web
services. Technical report, Distributed Systems Institute, Semantic Web Group,
University of Hannover, 2006.

2. Advanced Distributed Learning Network. SCORM: The sharable content object
reference model, 2001. http://www.adlnet.org/Scorm/scorm.cfm.

3. M. Baldoni, C. Baroglio, I. Brunkhorst, N. Henze, E. Marengo, and V. Patti. A
Personalization Service for Curriculum Planning. In E. Herder and D. Heckmann,
editors, Proc. of the 14th Workshop ABIS, pages 17–20, Hildesheim, Germany,
October 2006.

4. M. Baldoni, C. Baroglio, and E. Marengo. Curricula Modeling and Checking. In
Proc. of AI*IA 2007: Advances in Artificial Intelligence, volume 4733 of LNAI,
pages 471–482. Springer, 2007.

5. M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and L. Torasso. Verifying the com-
pliance of personalized curricula to curricula models in the semantic web. In Proc.



of the Semantic Web Personalization Workshop, pages 53–62, Budva, Montenegro,
2006.

6. M. Baldoni, C. Baroglio, and V. Patti. Web-based adaptive tutoring: An approach
based on logic agents and reasoning about actions. Artificial Intelligence Review,
1(22):3–39, 2004.

7. M. Baldoni, C. Baroglio, V. Patti, and L. Torasso. Reasoning about learning object
metadata for adapting SCORM courseware. In L. Aroyo and C. Tasso, editors,
Int. Workshop on Engineering the Adaptive Web, EAW’04, pages 4–13, 2004.

8. M. Baldoni and E. Marengo. Curriculum Model Checking: Declarative Represen-
tation and Verification of Properties. In Proc. of 2nd Eur. Conf. EC-TEL, volume
4753 of LNCS, pages 432–437. Springer, 2007.

9. R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information extraction
with lixto. In Peter M. G. Apers, Paolo Atzeni, Stefano Ceri, Stefano Paraboschi,
Kotagiri Ramamohanarao, and Richard T. Snodgrass, editors, VLDB, pages 119–
128. Morgan Kaufmann, 2001.

10. R. Baumgartner, N. Henze, and M. Herzog. The personal publication reader:
Illustrating web data extraction, personalization and reasoning for the semantic
web. In ESWC, pages 515–530, 2005.

11. P. Brusilovsky and J. Vassileva. Course sequencing techniques for large-scale
web-based education. Int. J. Cont. Engineering Education and Lifelong learning,
13(1/2):75–94, 2003.

12. O. E. M. Clarke and D. Peled. Model checking. MIT Press, Cambridge, MA, USA,
2001.

13. Juri L. De Coi, Eelco Herder, Arne Koesling, Christoph Lofi, Daniel Olmedilla,
Odysseas Papapetrou, and Wolf Sibershi. A model for competence gap analysis.
In Proc. of WEBIST 2007, 2007.

14. E. A. Emerson. Temporal and model logic. In Handbook of Theoretical Computer
Science, volume B, pages 997–1072. Elsevier, 1990.

15. European Commission, Education and Training. The Bologna process. http:

//ec.europa.eu/education/policies/educ/bologna/bologna en.html.
16. E. Giunchiglia and M. Maratea. SAT-based planning with minimal-]actions plans

and “soft” goals. In Proc. of AI*IA 2007: Advances in Artificial Intelligence,
volume 4733 of LNAI. Springer, 2007.

17. N. Henze. Personal readers: Personalized learning object readers for the semantic
web. In 12th International Conference on Artificial Intelligence in Education,
AIED05, Amsterdam, The Netherlands, 2005.

18. N. Henze and D. Krause. Personalized access to web services in the semantic
web. In The 3rd International Semantic Web User Interaction Workshop (SWUI,
collocated with ISWC 2006, November 2006.

19. IMSGlobal. Learning design specifications. Available at http://www.imsglobal.

org/learningdesign/.
20. R. Koper and C. Tattersall. Learning Design: A Handbook on Modelling and De-

livering Networked Education and Training. Springer Verlag, 2005.
21. M. Melia and C. Pahl. Automatic Validation of Learning Object Compositions. In

Information Technology and Telecommunications Conference IT&T’2005: Doctoral
Symposium, Carlow, Ireland, 2006.

22. S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,
1995.

23. W. M. P. van der Aalst and M. Pesic. DecSerFlow: Towards a Truly Declarative
Service Flow Language. In Mario Bravetti and Gialuigi Zavattaro, editors, Proc.
of WS-FM, LNCS, Vienna, September 2006. Springer.


