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A bst r act . The need for specifying choreographies when developing ser-
vice oriented systems recent ly arose as an important issue. Although
declarat iveness has been ident iÞed as a key feature, several proposed ap-
proaches model choreographies by focusing on procedural aspects, e.g. by
specifying cont rol and message ßows of the interact ing services. A similar
issue has been addressed in Mult i-Agent Systems (MAS), where declara-
t ive approaches based on social semant ics have been used to capture the
nature of agents interact ion without over-const raining their behavior.
In this paper we show how DecSerFlow can be mapped to SCIFF in an
automat ic and complete way. DecSerFlow is a graphical language capable
to model in an intuit ive and declarat ive fashion service ßows, whereas
SCIFF is a framework based on abduct ive logic programming originally
developed for dealing with social interact ions in MAS. By means of a
running example, we show how the conjunct use of both approaches
could be fruit fully exploited to declarat ively specify and verify service
choreographies.

1 I nt ro duct ion

The service oriented paradigm and the related technologies for implement ing
and interconnect ing basic services are reaching a good level of maturity and a
widespread adopt ion. Nevertheless, modeling service interact ion from a global
viewpoint , i.e. represent ing service choreographies, is st ill an open challenge [1].
Indeed, the needfor specifying choreographieswhen developing service oriented
systems recent ly arose as an important issue.

As pointed out in [1, 2], the current major proposals for modeling service
interact ion, such as WS-BPEL [3] and WS-CDL [4], miss to tackle some key
concepts. As a consequence of the adopt ion of a Òglobal viewÓ(which inherent ly
crossesorganizat ional boundariesand should be consequently independent from
the perspective of single participants), declarat ivenessbecomes a fundamental
requirement . Each organizat ion perceives a choreography as a public contract
which provides the rules of engagement for making all the interact ing part ies



correctly collaborate, without stat ing how such a collaboration is concretely car-
ried out ; in our view, this lat ter informat ion should bekept private in theent it iesÕ
deÞnit ion/ implementat ion, and not direct ly addressed at the choreography level.

The main problem is that , although declarat iveness has been ident iÞed as
a key feature, several proposed approaches model choreographies by focusing
on procedural aspects, e.g. by specifying the control and message ßow of the
interact ing services. This often causes the modeler to miss the real focus of the
choreography, leading to over-const rain the choreography under study and to
consequent ly loose some acceptable interact ions.

To overcomethese limits, van der Aalst and Pesic have proposed DecSerFlow
[5], a t ruly declarat ive graphical language for the speciÞcat ion of service ßows.
DecSerFlow adopts a more general and high-level view of services speciÞcat ion,
by deÞning them thr ough a set of policies or businessrules. It does not give a
completeand procedural speciÞcat ion of services, but concent rateson what is the
(minimal) set of constraints to be fulÞlled in order to successfullyaccomplish the
interact ion. Beyond its appealing graphical representat ion, DecSerFlow concepts
have an underlying semant ics in terms of Linear Temporal Logic (LTL).

The issueabout what informat ion should becaptured or left out by theglobal
view of interaction has been (and is still) matter of discussion also in the MAS
research community, and in both set t ings we Þnd similar efforts and proposed
solutio ns. Therefore, it is not surprising that mult i-agent and service-oriented
systems share many similarit ies [6] (see Table 1).

MAS SOA
interact ing agents autonomous heterogeneous

agents
autonomous heterougeneous
services

communicat ion communicat ive acts messages
local view of interact ion (external) agents policies behavioral interfaces
global view of interact ion global interact ion protocols choreographies

Table 1. Some similarit ies between mult i-agent and service-oriented systems

When dealing with the problem of modeling global interact ion protocols
within a MAS, we mainly Þnd two complementary approaches, as in the case of
choreographies: approaches with aim to exact ly specify how the interact ion pro-
tocol should be executed by the interact ing agents (such as for example AUML
[7]), and approacheswhich consider MAS as open societies and model interac-
t ion protocols as a way to declarat ively constrain the possible interact ions. So-
cial approachesabst ract away from the nature of interact ing ent it ies, support ing
heterogeneity, and adopt an open perspect ive, i.e. let part icipants autonomously
behave as they want , where not explicit ly forbidden. Furthermore, their aim is
not only to support the speciÞcat ion task, but also to deÞnea preciseseman-
tics of interaction, enabling the possibility to perform veriÞcat ion tasks. Many
prominent works center around the concept of commitment in social agencies,
to represent the state of affairs during the social interact ion. For example, in



[8] the semant ics of communicat ive acts is deÞned by means of t ransit ions on a
Þnite stateautomaton which describes the concept of commitment ; in [9], the au-
thors adopts a variant of Event Calculus to commitment-based protocols, where
commitments evolve in relat ion to events and ßuents and the semant ics of mes-
sages is given in terms of predicates on such events and ßuents (to describe how
messages affect commitments). In the last years, Singh et al. have applied the
concept of commitment-based protocols in the context of the Service Oriented
Ar chitectur e and BusinessProcessManagement , by addressingthe problem of
businessprocessadaptabilit y [10] and of protocols compositio n [11]. The idea of
taking social semant ics from the MAS world and applying it to the speciÞcat ion
of service choreographies has been adopted also in [12], although the focus is
more on the procedural aspects, rather than on the declarat ive ones.

Within the SOCS EU Project 3 we have developed a language, called SCIFF,
for specifying global interact ions protocols in open agent societ ies, giving its
declarat ive semant ics in terms of Abduct ive Logic Programming (ALP) [13].
Furthermore, we have equipped the SCIFF language with a corresponding proof
procedure, capable to verify at run-t ime (or a posteriori, by analizing a log
of the interact ion) whether interact ing agents behave in a conformant manner
w.r.t . the modeled interact ion protocol. Protocols are speciÞed only by consid-
ering the external observable behavior of interacting ent ities (i.e. the different
observable events which occurred during the interact ion), and by the concept
of expectat ion about desired events and interact ions; occurred events and pos-
itiv e/negat ive expectat ions are linked by means of forward rules called Social
Integrity Constraints.

We believe that the conjunct use of declarat ive approaches coming from the
Service Oriented Comput ing (SOC) and Mult i Agent Systems (MAS) research
areascould be fruit fully exploited to specify and verify servicechoreographies. To
this aim, in this paper we show how DecSerFlow can be mapped to SCIFF in an
automat ic and complete way, making the two proposals beneÞt from each other.
We mot ivate the importance of adopt ing a declarat ive approach for modeling
choreographies and show the feasibility of our approach by considering a simple
but interest ing running example.

The paper is organized as follows: sect ions 2 and 3 respect ively int roduce
the running example and describe some issueswhich arise when modeling a
choreography. Sect ion 4 brießy int roduce the DecSerFlow language, showing how
the running example could be successfullymodeled by using it; then, section 5
presents the SCIFF framework and how DecSerFlow can be expressed in terms
of SCIFF Integrit y Constraints. Discussion and Conclusions follow.

2 A running example

Let us consider a choreography that envisages three different roles: a customer
which interacts with a seller to place an order of a set of items, and a warehouse
3 SOciet ies of heterogeneous ComputeeS, IST-2001-32530 (home page

ht tp:/ / lia.deis.unibo.it / research/ SOCS/ ).



which could part icipate to the interact ion by communicat ing to the seller if it is
able (or not) to ship the ordered items.

Each execut ion of the choreography (a choreography instance) is ident iÞed by
the concept of order. The customer makes up an order by choosing one or more
items from the seller list . During the order building phase (i.e. before commit t ing
an order), it is always possible to cancel the order; in this case, the user cannot
choose other items within the same instance anymore, and the choreography
terminates (a canceled order cannot be commit ted). After having commit ted an
order, the customer expectsa positive or negat ive answer from the seller. In case
of a posit ive answer, a payment phase will be performed: the customer will pay
for the order and, Þnally, the seller will deliver a single corresponding receipt .

The seller could freely decidewhether to conÞrm or refuse customerÕs order,
but somet imes it has also to consider the opinion of the warehouse about the
shipment :

Ð the seller can conÞrm the order only if the warehouse has previously con-
Þrmed the shipment ;

Ð if the warehouse states that it is unable to execute the shipment , then the
seller should refuse(or have refused) the order.

3 W hat is t he focus of a choreography?

By looking at thechoreography description of theprevioussection, wenotice that
it is inherent ly declarat ive. It doesnot Þx thecontrol ßow of the involved services,
nor how they should exchangemessages in order to accomplish the choreographic
st rategic goal. Rather, it focuses on a more abstract level, t rying to capture the
essent ial of the interaction by adopting a global and open perspective, not driven
by implementation needs.This is the reason why we Þnd, inside the descriptio n,
different kinds of constraints, as for example:

Ð t ime-ordered relat ionships among act ivit ies (Òafter having commit ted an
order, the customer expects a posit ive or negat ive answerÓ);

Ð cardinality const raints (Òthe seller will deliver a single corresponding re-
ceiptÓ);

Ð negat ive relat ionships, to expressalsowhat is forbidden during the choreog-
raphy execut ion (Òthe user cannot choose other items [. . . ] anymoreÓ)

Ð non-determinist ic/ opaquechoicesaswell asnon-oriented relat ionshipsamong
act ivit ies (e.g., the seller can refuse independent ly from the warehouse an-
swer).

It is worth not ing that negat ive informat ion, as far asweareconcerned, isnot
addressed by current proposals: they adopt a procedural-oriented control ßow
approach making the implicit assumpt ion that all that is not explicit ly mod-
eled is forbidden. As pointed out in [5], the impossibility of expressing negat ive
relationships forcesthe modeler to explicitly enumerate all the allowed possibil-
it ies, int roducing ambiguous decision points. This often leads to over-const rain
the model, forbidding possible execut ions which actually correct ly realize the
intended choreography (see [14] for a discussion).
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F ig. 1. Three different possible realizat ions of the acceptance phase in BPMN.

3.1 A voiding over -speciÞcat ions

Avoiding over-speciÞcat ionsis a key issuewhenmodeling choreographies.Instead
of st rict ly specify one of the possible behaviors which is able to respect the
choreography, the aim of the modeler should be the ident iÞcat ion of the minimal
set of constraints that correct ly regulate the interact ion, achieving a trade-off
betweenthe speciÞcat ion of what is forbidden/ expected and what is allowed.

An interesting example which clearly shows such issueis the order accep-
tance phase described in Sect ion 2. The aim of this phase is to ident ify when
a commit ted order should be accepted or rejected by the seller, taking into
account (in some cases) the warehouse too. At a choreographic level, the cou-
pling between seller and warehouse and between customer and warehouse is
reduced at a minimum. First of all, when and how the warehouse is contacted
is not speciÞed; furthermore, there could be different choreography execut ions
in which the warehouseis not contacted at all. An execution in which the seller
autonomously decides to reject the order, without asking warehouseÕsopinion, is
clearly accepted by thechoreography; thecase in which thewarehouserefuses the
shipment without observing the commited order (because e.g. it is overloaded)
is implicitly envisaged too.

The over-speciÞcat ion problem arises if we t ry to model the acceptance phase
by using one of the current proposed languages for choreographies. Figure 1
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F ig. 2. A general framework for the speciÞcat ion and veriÞcat ion of choreographies

shows three different over-speciÞed possible realizat ions of the acceptance phase
by adopt ing BPMN [15] collaborat ive models.

Diagram 1(a) showsa choreography where, after having received orderÕscom-
mitment , the seller contacts the warehouse in order to know if it can ship the
order or not . Then, if the seller evaluates that , due to a private policy, it is in
any case unable to conÞrm the order, it will senda message to the warehousein
order to stop the processingof its decision; otherwise, the seller will conÞrm or
refuse the order by considering warehouseÕsanswer. In diagram 1(b), instead, we
Þnd that the seller Þrst ly evaluates its internal policies, and contacts the ware-
house only if the choreography prescribe to do so (i.e. only if it would accept the
order; in this case, receiving an answer from the warehouse is a mandatory re-
quirement). Finally, diagram 1(c) showsa different messageßow from customerÕs
side, and envisages a seller who does not apply any private choice, but simply
forwards what has been decided by the warehouse.

The three diagrams shows that approaching the choreography modeling task
by adopt ing a typical control+ messageßow perspect ive leads to point lessly com-
plicate the model, loosing some acceptable interact ions. We think that such a
perspect ive should be mat ter of a second phase, in which the choreographic
model is grounded on a set of service behavioral interfaces,to be developed from
scratch or selected from an already exist ing repository.

3.2 Towar ds a fr amewor k encompassing semant ics and ver iÞcat ion
capabi l i t ies

Besides being able to really capture the different concepts involved in a choreog-
raphy, possibly in a user-friendly way, a modeling language should be supported
by an underlying formal (possibly declarat ive) semant ics, hencemaking possible
different kind of veriÞcat ions. Figure 2 shows the schema of a general choreog-
raphy speciÞcat ion and veriÞcat ion framework.

The framework is mainly composed by three different parts: (i) a (graphical)
high-level modeling language, capable to specify choreographies; (i i) an under-
lying formal language, equipped with different veriÞcation capabilities; and (ii i)
a mapping between the two speciÞcat ion languages, in order to automat ically
obtain the formal descript ion from the graphical one.



W.r.t . the veriÞcat ion issue, we cite three fundamental ones:

Ð propert ies veriÞcat ion, to ensure that a choreography meets some general
(such as livelock and deadlock freedom)or speciÞc(i.e. domain dependent)
propert ies;

Ð conformance veriÞcat ion, to verify (at run-t ime or a posteriori, by analyzing
a message log) whether a set of services execut ing the choreography behaves
as prescribed by the model;

Ð interoperabilit y veriÞcation [16], to check if a concrete service behavioral
interface is capable to play a given role within the choreography.

It is worth not ing that such three veriÞcat ion issuesare the same as the
ones int roduced by Guerin and Pit t in the context of open MAS [17]: (i) verify
protocol propert ies, (i i) verify compliance by observat ion, and (ii i) verify that
an agent will always comply.

We propose to ground the general framework shown in Figure 2 by adopt-
ing DecSerFlow as a graphical speciÞcat ion language, and to exploit SCIFF as
its underlying formalism. To demonstrate the feasibility of our approach, we
show how our running example could be successfullyexpressedin DecSerFlow,
and then provide the mapping of the different DecSerFlow conceptsto SCIFF
Integrity Constraints. In [18] we already int roduced the use of SCIFF for speci-
fying choreographies and performing the conformance veriÞcat ion task, leaving
out the high-level speciÞcat ion language and the corresponding mapping; this
work could be considered as a Þrst step to Þll this gap.

4 Choreography modeling in D ecSerFlow

In [5], van der Aalst and Pesic propose DecSerFlow, a declarat ive language for
modeling service ßows. Besides declarat iveness, its advantages rely on its ap-
pealing graphical appearance, its extensibility and its formal semant ics given by
means of Linear Temporal Logic (LTL).

As described in [5], modeling service speciÞcat ions in DecSerFlow starts by
ident ifying the different involved act ivit ies (i.e. atomic logical unit of work),
and then to ident ify constraints on their execut ion, a l«a policies/ business rules.
Constraints are given as templates, i.e. as relat ionships between two (or more)
whatsoever act ivit ies: typically, the terms source and target act ivit ies indicate
act ivit ies linked by a relat ionship, where the execut ion of the source act ivity
Òact ivatesÓthe relat ion and impose some constraint on the target act ivity. The
meaning of each constraint template is expressed as an LTL formula, hence the
name ÒformulasÓto indicate DecSerFlow relat ionships.

DecSerFlow core relationships are grouped into threefamilies:

Ð existence formulas, unary relat ionships used to const rain the cardinality of
act ivit ies;

Ð relation formulas, which deÞne (posit ive) relat ionships and dependencies be-
tweentwo (or more) activities;



sour ce t em plat e
nam e

t ar get descr ipt ion (from the example)

cancel
order

C1 negat ion
response

choose item in case of cancelat ion, the user cannot
choose other items [. . . ] anymore

C2 responded
absence

commit order a canceled order cannot be commited

commit
order

C3 response refuse or conÞrm
order

after having commit ted an order, the cus-
tomer expects a posit ive or negat ive an-
swer from the seller

C4 precedence conÞrm shipment the seller could conÞrm the order only if
the warehouse has previously conÞrmed
the shipment

conÞrm
order

C5 response payment in the former situat ion [posit ive answer], a
payment phase will be performed

refuse
shipment

C6 responded
existence

refuse order if the warehouse [. . . ] is unable to execute
the shipment , then the seller should refuse
(or have refused) the order

payment C7 response receipt delivery the customer will pay for the order and,
then, the seller should deliver a single cor-
responding receipt

receipt
delivery

C8 cardinality
0..1

theseller will deliver a single corresponding
receipt

Table 2. Mapping the statements of the running example to DecSerFlow const raints

Ð negation formulas, the negated version of relat ion formulas.

In order to present the DecSerFlow notat ion and how it could be effect ively
used to model service choreographies,we show how our running example could
be expressed asa DecSerFlow diagram. In our example, wewill useonly a limited
number of DecSerFlow relat ions, such as responded existence (if A is performed,
then also B must be performed, either before or after A) and response (if A
is performed, then B must be performed after). For a complete descript ion of
the DecSerFlow language and its underlying LTL formalizat ion, the interested
reader is referred to [5].

4.1 M odel ing t he r unning example

Table 2 shows how the different statements of our running example could be
translated to DecSerFlow act ivit ies and constraints in an intuit ive and straight-
forward way.

For example, to specify that only a single receipt should be delivered by the
seller, wemay usetheDecSerFlow absence(1) existenceformula. Theabsence(N )
formula indeed states that the involved act ivity cannot be executed more than
N times, i.e. constrains its cardinalit y between0 and N . A responded existence
relat ion is used to model the relat ionship between the refusal of shipment and
order: it states that if the shipment is refused by the warehouse, the refuse



order act ivity should be executed too, either before or after it . DecSerFlowÕs
response relat ion imposes a forward temporal order on the responded existence
formula; for example, constraint C3 states that after having executed the order
commitment, then a positive or negative answer from the seller is expected to
be performed afterwards (when more target act ivit ies are involved, they are
considered in a disjunctiv e manner). Obviously, a precedence formula is provided
too, (e.g. C4).

DecSerFlow deÞnesalso more complex relationships, which are not part of
our running example. An example is the chain response formula, which allows
the user to model the typical st rict sequence relat ionships of business processes:
it states that whenever the source happens, then the target should be performed
immediately after it.

For each positiv e relat ionships,DecSerFlow deÞnesa corresponding negat ive
version. Basically, negat ive relat ions forbids the execution of the target activit y
under certain conditio ns. E.g., the responded absence relat ionship (which is actu-
ally the negat ion of the responded existence one) states that if the sourceact ivity
is executed, then the target act ivity is forbidden. Such a negat ive relat ionship is
usede.g. to model the impossibility to commit an order if it is canceledby the
customer (const raint C2). It is worth not ing that , as pointed out in [5], some
negat ive relat ions are equivalent ; e.g., stat ing that B is responded absence of A
is equivalent to specify that A and B should not coexist in the same execut ion
instance.

4.2 Com pl eti ng t he DecSerFl ow model

By deeply analyzing the running example, we could complete the DecSerFlow
diagram shown in Table2 with other useful inferred const raints, in order to really
model all the intented concepts of the descript ion; the result is shown in Table
3, while in Figure 3 the whole set of constraints is shown using the DecSerFlow
graphical notat ion (see also Tables 4 and 5 for the correspondence between the
DecSerFlow graphical symbols and their meaning).

C15 and C16 deal with the coreconcept of the choreography, which is actually
thecommitment of oneorder. Sincesuch an order could becanceled, weat tach an
absence(1) constraint to the order commitment act ivity (to express that at most
oneorder can becommit ted), and bind thecancelat ion and thecommitment with
a mutual substitution DecSerFlow relat ion, which states that at least one of the
two bounded activities has to be executed(i.e. an order should be committed or
canceled).

5 M apping DecSerFlow t o t he SCIF F fra mework

The SCIFF [13] languagewas originally int roduced for the speciÞcat ion of global
interact ion protocols in open agent societ ies. As we have already pointed out , it
doesnot make any assumption about participants internals, but instead focuses



sour ce t ype t ar get descr ipt ion (from the example)
refuse
order

C9 precedence commit order An answer from the seller is valid only if it
is performed after order commitment

conÞrm
order

C10 precedence commit order

payment C5 precedence conÞrm order A valid payment should be preceded by the
conÞrmat ion of the order

deliver
receipt

C7 precedence payment The receipt should be delivered only if the
order has been paid

t ar get t ype t ar get descr ipt ion (from the example)
conÞrm
order

C11 not co-
existence

refuse order Possible answers are mutually exclusive

conÞrm
shipment

C12 not co-
existence

refuse shipment

commit
order

C13 precedence choose item an order is made up by at least one chosen
item

cancel
order

C14 precedence choose item

commit
order

C15 cardinality
0..1

the choreography cent res around the con-
cept of a single order, which could possibly
be canceled

commit
order

C16 mutual
subst itu-
t ion

cancel order

Table 3. Inferred DecSerFlow const raints to complete the running example

on the observable and relevant events which occur within the society at run-
time. To let the user decideswhich are the relevant events inside the considered
domain, the SCIFF language completely abst racts from the problem of deciding
Òwhat is an eventÓ.

SCIFF adopts an explicit not ion of t ime, and models the occurrence of an
event Ev at a certain t ime T as H (Ev, T), where Ev is a logic programming
term and T is an integer, represent ing the discrete t ime point at which the event
happened (the bold H stand for ÒHappenedÓ). The set of all the events that
have happened during a protocol execut ion const itutes its interact ion log.

Besidethe explicit representation of what has already happened,SCIFF in-
t roducestheconcept of ÒwhatÓisexpected to happen, and ÒwhenÓ. Thenot ion of
expectat ion plays a key role when deÞning interact ion protocols, choreographies,
and more in general any dynamically evolving process: it is quite natural, in fact ,
to think of such processes in terms of rules of the form Òif A happened, then
B should be expected to happen, under certain conditio nsÓ. In agreement with
DecSerFlow, SCIFF pays part icular at tent ion to the openness of interact ion:
interact ing peers are not completely constrained, but they enjoy some freedom.
This means that the prohibitio n of a certain event should be explicitly expressed
in the model and this is the reason why SCIFF supports also the concept of neg-
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F ig. 3. DecSerFlow model of the running example

at ive expectat ions (i.e. of what is expectednot to happen). Positiv eexpectat ions
about events come with form E(Ev, T), where Ev and T could be variables, or
they could be grounded to a part icular (partia lly speciÞed)term or value respec-
t ively. Constraints (a là Constraint Logic Programming), like T > 10, as well as
Prolog predicates can be speciÞed over the variables; at taching the example con-
st raint on the above expectat ion means that the expectat ion is about an event
to happen at a t ime greater than 10. Conversely, negat ive expectat ions about
events comewith form EN (Ev, T); just to givean intuit ion, variablesused inside
negat ive expectat ions are universally quant iÞed: writ ing EN (Ev, T) ! T > 10
means that Ev is forbidden at any t ime which is greater than 10.

Social Integrity Constraints are forward rules used to link happened events
and expectat ions in order to deÞnethe declarat iveruleswhich regulatethecourse
of interact ion, i.e. model the interact ion protocol. They come as rules of the form
body " head, where body can contain (a conjunct ion of) happened events and
expectat ions, and head can contain (a disjunct ion of conjunct ions of) posit ive
and negat ive expectat ions. For example, to model that Òif a customer sends the
payment to the seller, then the seller should answer delivering the corresponding
receipt , within 24 hoursÓwe could use the following Integrit y Constraint:

H (pay(Customer,Sel ler , I tem), Tp)

! E(del i ver (Sel ler , Customer, r eceipt(Or der , I d)), Td) " Td > Tp " Td < Tp + 24.

SCIFF accepts also a (Prolog) knowledge base, where the user can deÞne
all the pieces of knowledge which are independent from the interact ion. De-
Þnedpredicates could be used inside Integrit y Constraints, reconciling forward,
abduct ive reasoning with backward, goal-oriented reasoning. Finally, note that
interact ion is considered to be goal oriented: the same interact ion protocol could
be seamlessly used for achieving different goals, which can beexpressed by means
of Prolog predicates and expectat ions.



The SCIFF semant ics is based on Abduct ive Logic Programming: an interac-
t ion speciÞcat ion (i.e. theset of rules regulat ing theallowed possible interact ions)
is mapped to an Abduct ive Logic Program, where Integrity Constraints deÞne
the interact ion protocols, and posit ive/ negat ive expectat ions are considered as
abducibles. The operat ional counterpart of the language, namely the SCIFF
proof procedure, is indeed able to verify conformance of a set of interact ing en-
t it ies w.r.t . the considered protocol by hypothesizing posit ive (resp. negat ive)
expectat ions and checking whether a matching happened event actually exists
(resp. does not exist ). For a detailed descript ion of the SCIFF language, as well
as its declarat ive semant ics and the corresponding proof procedure, the inter-
ested reader is referred to [13].

5.1 Expressing D ecSerF low concept s as I nt egr i t y Const raint s

Let us now consider again our running example, in order to explain how the
different DecSerFlow concepts could be mapped to SCIFF Integrity Constraints.

Roughly speaking, each DecSerFlow const raint is mapped to a set of SCIFF
Integrity Constraints. The body of the Integrity Constraint which maps a rela-
tion or negat ion formula is constituted by the happenedevent which corresponds
to the formulaÕs source (each DecSerFlow relat ion is t riggered when its source
act ivity is performed). Depending on the nature of the relat ion, the head is
instead is determined by (a disjunction of) positiv e or negat ive expectat ions.

For example, to specify that a generic act ivity A is subject to an absence(N )
cardinality const raint , SCIFF uses an Integrity Constraint which states that
if N different execut ions of A are performed, then the N + 1-th is forbidden.
Since SCIFF adopts an explicit not ion of t ime, differences between execut ions
are modeled as differences between the involved execut ion t imes; hence, the
absence(N ) on activit y A can be speciÞed as follows4:

N̂

i = 1

Ò
H (A, Ti ) " Ti > Ti ! 1

Ó
! EN (A, T ) " T > TN .

Furthermore, thanksto theexplicit not ion of t ime, another interest ing feature
of the mapping is that the ÒresponseÓand ÒprecedenceÓversion of each formula
are formalized in the same way, but by imposing opposite constraints on the
involved t imes. Table 4 explicit ly points out such similarit ies by showing how
the responded existence, response and precedence const raints, as well as their
negated version, can be mapped to SCIFF.

Some DecSerFlow formulas are translated to SCIFF in a slight different way.
In part icular, their mapping do not have a triggering part but simply generatesa
set of expectat ions (see Table 5). Therefore, they deÞne,in somesense,the initia l
goal of the choreography, since the corresponding expectat ions are generated
independent ly from the interact ion.

Table 6 represents the complete mapping of the DecSerFlow model shown
in Figure 3. For the sake of simplicity, we have left out the informat ion about
4 We suppose that T0 = 0 and that at a given t ime only one act ivity can happen.



DecSerFlow formula Meaning SCIFF Integrity Const raint

! "
if A is executed, then B
should be executed too

H (A, TA ) ! E(B , TB )

! "
if A is executed, then B can-
not be executed

H (A, TA ) ! EN (B , TB )

! "
if A is executed, then B
should be executed after it

H (A, TA ) ! E(B , TB ) " TB > TA

! "
if A is executed, then B can-
not be executed after it

H (A, TA ) ! EN (B , TB ) " TB > TA

! "
if A is executed, then B
should be executed before it

H (A, TA ) ! E(B , TB ) " TB < TA

! "
if A is executed, then B can-
not be executed before it

H (A, TA ) ! EN (B , TB ) " TB < TA

Table 4. Mapping of the simple DecSerFlow relat ion and negat ion formulas in SCIFF

DecSerFlow formula Meaning SCIFF Integrity Const raint

!

"

A is forbidden ! EN (A, TA )

!

"##$ A has to be executed at least
N ti mes

!
V N

i = 1

Ò
E(A, Ti ) " Ti > Ti ! 1

! " A or B should be executed ! E(A, TA ) # E(B , TA )

Table 5. Mapping of Ògoal-orientedÓDecSerFlow formulas

act ivit ies originators (i.e. about the role responsible for an act ivity); such an
informat ion could be seamlesslyadded to the SCIFF formalizat ion, but it is not
envisaged in the current version of DecSerFlow.

As already pointed out , DecSerFlow deÞnes other constraints, missing in our
running example. Anyway, they are mapped to SCIFF Integrity Constraints
too (see [19] for a complete descript ion of such a mapping). For example, the
following rule maps the chain response between A and B :

H (A, TA ) " E(B , TB ) ! TB > TA ! EN (X , TX ) ! TX > TA ! TX < TB .

The translat ion t ries to intuit ively capture the not ion of next state, which is
direct ly expressed in LTL as a temporal modality (by using the operator #). It
relies on the fact that if B should belong to the next state of A, then between
the two execut ion t imes no other act ivity should be performed. For a descript ion
of the complete t ranslat ion of core DecSerFlow concepts to SCIFF, see [19].

6 D iscussion and Conclusions

In this work we have proposed a conjunct use of declarat ive approaches coming
from the SOC and MAS research areas, to the aim of specifying and verifying
service choreographies.



C1 H (cancel or der , Tc) ! EN (choose i tem, Ti ) " Ti > Tc.

C2 H (cancel or der , Tc) ! EN (commi t or der , To).

H (commi t or der , To) ! EN (cancel or der , Tc).

C3 H (commi t or der , To) ! E(conf i r m or der , Tc) " Tc > To

# E(r ef use or der , Tr ) " Tr > To.

C4 H (conf i r m or der , To) ! E(conf i r m shipment, Ts) " Ts < To.

C5 H (conf i r m or der , Tc) ! E(payment, Tp) " Tp > Tc.

H (payment, Tp) ! E(conf i r m or der , Tc) " Tc < Tp .

C6 H (r ef use shipment, Ts) ! E(r ef use or der , To).

C7 H (payment, Tp) ! E(del i ver r eceipt, Td) " Td > Tp.

H (del i ver r eceipt, Td) ! E(payment, Tp) " Tp < Td.

C8 H (del i ver r eceipt, Td1) ! EN (del i ver r eceipt, Td2) " Td2 > Td1.

C9 H (r ef use or der , Tr ) ! E(commi t or der , To) " To < Tr .

C10 H (conf i r m or der , Tc) ! E(commi t or der , To) " To < Tc.

C11 H (r ef use or der , Tr ) ! EN (conf i r m or der , Tc).

H (conf i r m or der , Tc) ! EN (r ef use or der , Tr ).

C12 H (r ef use shipment, Tr ) ! EN (conf i r m shipment, Tc).

H (conf i r m shipment, Tc) ! EN (r ef use shipment, Tr ).

C13 H (commi t or der , Tc) ! E(choose i tem, Ti ) " Ti < Tc.

C14 H (cancel or der , Tc) ! E(choose i tem, Ti ) " Ti < Tc.

C15 H (commi t or der , Tc1) ! EN (commi t or der , Tc2) " Tc2 > Tc1.

C16 ! E(commi t or der , To)

# E(cancel or der , Tc).
Table 6. Mapping of the DecSerFlow running example to SCIFF

In part icular, we have chosen DecSerFlow as the modeling language and
SCIFF as its underlying formalizat ion. To make DecSerFlow beneÞt of SCIFF
in an automat ic way, we have shown how the different DecSerFlow concepts
can be mapped to SCIFF Integrity Constraints and applied our methodology
on a running example. The advantage of such a translat ion is twofold: on one
hand, it is possible to specify SCIFF rules by using an intuitiv e, extensibleand
user-friendly graphical language; on the other hand, a DecSerFlow model may
be grounded not only on LTL but also on the SCIFF abduct ive framework,
acquiring some new advantages and features, such as:



Ð Expressivity of the language. The SCIFF language is capable to model rich
const raints and condit ions on data and execut ion t imes involved in the in-
teract ion; we are current ly studying how DecSerFlow could be extended to
graphically represent such constraints.

Ð VeriÞcat ion capabilit ies of the SCIFF framework. As described in [13, 18],
by translating DecSerFlow to a SCIFF speciÞcat ion we could automat ically
use it to perform the conformance veriÞcat ion task. Furthermore, SCIFF
has been extended to deal also with the veriÞcat ion of propert ies [20] and
interoperability [21]; we intend to study how such extended proofs could be
applied to DecSerFlow models, aiming at covering all the building parts of
the general framework schema shown in Þgure 2.

Ð Possibility to mine DecSerFlow models from execution tr aces.Since SCIFF
belongs to the logic programming set t ing, it is possible to apply all the rea-
soning techniques developed inside such a set t ing on it . In part icular, in
[22] we have shown how an Induct ive Logic Programming algorithm can be
adapted to mine SCIFF rules from event logs; thanks to the one-to-onemap-
ping of DecSerFlow conceptsto SCIFF, it is then possible to automat ically
obtain a corresponding DecSerFlow descript ion of the mined model.

Finally, as future work we envisage a deep comparison between SCIFF and
LTL, to bet ter understand their st rength, weaknesses and relat ionships and to
exploit the possibility to have two different mappings of DecSerFlow.
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