
Matteo Baldoni, Cristina Baroglio,
and Viviana Mascardi (eds.)

Agent, Web Services,
and Ontologies
Integrated Methodologies

Int. Workshop MALLOW-AWESOME’007
Durham, September 6th–7th, 2007
Proceedings

MALLOW-AWESOME’007 Home Page:
http://awesome007.disi.unige.it/

Preface

Dear attendee, welcome to MALLOW-AWESOME’007!

MALLOW-AWESOME’007 is at its first edition this year, first edition of a
hopefully long series. It was born for stimulating discussion among researchers
and practitioners working on Agents, Web Services, and Ontologies, in order to
help the identification and the definition of Methodologies for integrating them.

The realisation of distributed, open, dynamic, and heterogeneous software
systems is, in fact, a challenge that involves many facets, from formal theories
to software engineering and practical applications. Scientists in various research
areas, such as Semantic Web, Web Services, Agents, Ontologies, are attacking
this problem from different perspectives. MALLOW-AWESOME’007 attempts
to provide a discussion forum for collecting and comparing such diverse experi-
ences with the aim of fostering cross fertilization.

MALLOW-AWESOME’007 is being held as part of MALLOW’007, the first
edition of Multi-Agent Logics, Languages, and Organisations Federated Work-
shops, in Durham, UK.

This volume contains the ten papers that have been selected by the Pro-
gramme Committee for presentation at the workshop. In addition to these pre-
sentations, Professor Munindar Singh from North Carolina State University,
USA, and Professor Julian Padget from University of Bath, UK, will be giv-
ing invited talks.

Each paper received at least three reviews in order to supply the authors
with a rich feedback. The papers contributions cover hot topics in the fields of
agents, web services, and ontologies, including services and ontologies in BDI and
goal-oriented agents, interaction processes in service-oriented systems, commu-
nication and argumentation among agents, and integrated applications. Selected
and expanded papers will be published as a special issue of the Multiagent and
Grid Systems International Journal.

We would like to thank all authors for their contributions and the members
of the Programme Committee for the excellent work during the reviewing phase.

August 10th, 2007

Matteo Baldoni
Cristina Baroglio
Viviana Mascardi

VI

Workshop Organisers

Matteo Baldoni Università di Torino, IT
Cristina Baroglio Università di Torino, IT
Viviana Mascardi Università di Genova, IT

Programme Committee

Mario Bravetti Università di Bologna, IT
Antonio Brogi Università di Pisa, IT
Thomas Eiter Technische Universitaet Wien, AT
Amal El Fallah Seghrouchni University of Paris 6, FR
Laura Giordano Università del Piemonte Orientale, IT
Georg Gottlob Oxford University, UK
Pilar Herrero Universidad Politécnica de Madrid, ES
Benjamin Hirsch TU Berlin, DE
Peter Massuthe Humboldt University Berlin, DE
Paola Mello Università di Bologna, IT
Andrea Omicini Università di Bologna, IT
Viviana Patti Università di Torino, IT
Adam Pease Articulate Software, California, US
Marco Pistore ITC-IRST, Trento, IT
Laurent Prevot Academia Sinica in Taipei, Taiwan
Paolo Rosso Universidad Politécnica de Valencia, ES
Munindar Singh North Carolina State University, US
Leon Sterling The University of Melbourne, AU
Birna van Riemsdijk Ludwig Maximilians University, Munich, DE
Chris Walton Slam Games, UK
Michael Winikoff RMIT University, AU
Yuhong Yan National Research Council Institute for Informa-

tion Technology, Fredericton, Canada
Nobuko Yoshida Imperial College, London, UK
Gianluigi Zavattaro Università di Bologna, IT

Additional Reviewers

Raymond Hu
Sara Corfini

Raman Kazhamiakin
Niels Lohmann

Sponsoring Institutions

Matteo Baldoni and Cristina Baroglio have partially been funded by the Eu-
ropean Commission and by the Swiss Federal Office for Education and Science
within the 6th Framework Programme project REWERSE number 506779 (cf.

VII

http://rewerse.net), and they have also been supported by MIUR PRIN 2005
“Specification and verification of agent interaction protocols” national project.

Viviana Mascardi has partially been funded by the MIUR PRIN 2005 “Specifi-
cation and verification of agent interaction protocols” national project.

Table of Contents

Invited Talks

Commitment-Based SOA . 1
Munindar P. Singh

Regulation Frameworks, Semantics and Service Oriented Architectures . . . 2
Julian Padget

Services and ontologies in BDI and goal-oriented
agents

Goal-Oriented and Procedural Service Orchestration – A Formal
Comparison . 3
M. Birna van Riemsdijk, Martin Wirsing

Argonaut: Integrating Jason and Jena for context aware computing
based on OWL ontologies (Short paper) . 19
Douglas Michaelsen da Silva, Renata Vieira

Interaction processes in service-oriented systems

Agent Societies and Service Choreographies: a Declarative Approach to
Specification and Verification . 27
Federico Chesani, Paola Mello, Marco Montali, Sergio Storari

Mapping BPMN to Agents: An Analysis . 43
Holger Endert, Tobias Küster, Benjamin Hirsch, Sahin Albayrak

Roles in Coordination and in Agent Deliberation: A merger of concepts . . 59
Guido Boella, Valerio Genovese, Roberto Grenna, and Leendert van
der Torre

Communication and argumentation among agents

MAgtALO: Using Agents, Arguments, and the Web to Explore
Complex Debates . 76
Simon Wells, Chris Reed

Enhancing Communication inside Multi-Agent Systems – An Approach
based on Alignment via Upper Ontologies . 92
Viviana Mascardi, Paolo Rosso, Valentina Cord̀ı

Applications

IX

A Service-Oriented Approach for Curriculum Planning and Validation . . . 108
Matteo Baldoni, Cristina Baroglio, Ingo Brunkhorst, Elisa Marengo,
Viviana Patti

Integrating Agents, Ontologies, and Web Services to Build Flexible
Sketch-based Applications . 124
Giovanni Casella, Vincenzo Deufemia

Extending the FIPA Interoperability to Prevent Cooperative Banking
Frauds . 140
Mauricio Paletta, Pilar Herrero

Author Index . 156

X

Commitment-Based SOA

Munindar P. Singh
(Joint work with Amit K. Chopra and Nirmit Desai)

Department of Computer Science
North Carolina State University, USA

http://www.csc.ncsu.edu/faculty/mpsingh/

Abstract. The vision of service-oriented computing is centered on busi-
ness services. By contrast, existing service-oriented architectures are for-
mulated in terms of low-level abstractions that are far removed from busi-
ness services. This talk describes a new architecture whose components
are business services and whose interconnections are modeled in terms of
the commitments that support key aspects of service engagements. This
talk also shows how this architecture relates to existing SOAs.

1

Regulation Frameworks, Semantics and
Service Oriented Architectures

Julian Padget

Department of Computer SCience
University of Bath, UK

http://www.cs.bath.ac.uk/ jap/

Abstract. The concept of the “institution” as used in the
social sciences, management and economics captures the
principle of right (and wrong) action and how an observ-
able action in the real world counts as an institutional ac-
tion, bringing about a change of institutional state. Com-
plementary to these ”rules of engagement” is the identi-
fication of the right actors - the searcher’s problem - and
how to describe an actor’s attributes effectively - the pub-
lisher’s problem.
As software development apparently moves towards in-
creasingly open architectures of loosely-coupled software
components, we believe institutional models are of increas-
ing relevance as a means to categorize formally the cor-
rect and incorrect behaviour of (collections of) software
components, that necessarily must operate within multi-
ple regulatory frameworks. Likewise, formal descriptions
of institutions and of software components, and the means
to reason about them both, appear to have a critical role
in supporting the component selection, composition and
enactment.
Our work to date has focussed (i) on agent-based systems,
developing a formalization of institutions and the inter-
actions between institutions, and (ii) service discovery for
semantic web-services, developing a generic matchmaking
and brokerage factory framework. The talk aims to draw
these strands together and explore how semantic technolo-
gies and institutional frameworks might be applied to the
construction of service oriented architectures.

2

Goal-Oriented and Procedural Service
Orchestration?

A Formal Comparison

M. Birna van Riemsdijk Martin Wirsing

Ludwig-Maximilians-Universität München, Germany
{riemsdijk, wirsing}@pst.ifi.lmu.de

Abstract. Goals form a declarative description of the desired end result
of (part of) an orchestration. A goal-oriented orchestration language is an
orchestration language in which these goals are part of the language. The
advantage of using goals explicitly in the language is added flexibility in
handling failures. In this paper, we investigate how goal-oriented mecha-
nisms for handling failures compare to more standard exception handling
mechanisms, by providing a formally defined translation of programs in
the goal-oriented orchestration language into programs in the procedu-
ral orchestration language, and proving that the procedural orchestration
has the same behavior as the goal-oriented orchestration.

1 Introduction

In the field of agent-oriented programming, there is an increasing amount of
research on the use of goals in agent programming languages (see, e.g., [24, 8, 21,
17, 3, 9, 20]). Goals form a declarative description of the desired end result of the
execution of (part of) a program. They are thus comparable to postconditions
as commonly used in program verification. However, the important difference
between goals and postconditions is that goals, in contrast with postconditions,
are part of the program. A goal-oriented language has language constructs which
express the goal that is to be reached by some part of the program.1

It is generally argued that one of the advantages of the explicit use of goals
in a programming language is added flexibility in handling failures [24, 19, Chap-
ter 5]. The idea is essentially that goals are used to monitor the execution of
statements, or plans in agent terminology. If the execution does not have the
desired result, goals are used to select a different plan. This mechanism is used
recursively, as plans can contain subgoals. The fact that a program and its parts
contain explicit representations of the desired result of their execution thus fa-
cilitates monitoring their execution and taking appropriate measures by trying
alternative courses of action if the execution fails to achieve these results.
? This work has been sponsored by the project SENSORIA, IST-2005-016004.
1 Goal-oriented programming should not be confused with logic programming. While

the latter is in principle purely declarative, goal-oriented programming has both
declarative and procedural features.

3

Goal-oriented programming is targeted at dynamic domains such as agent-
based systems in which the programmer does not have full control over all aspects
of system behavior, e.g., due to the existence of other agents or environmental
aspects outside control of the agent. In such systems, one always needs to take
into account that things might “go wrong”. In more restricted settings in which
one can prove that a program always fulfills some desired post-condition (per-
haps assuming some generally valid preconditions), goal-oriented programming
is superfluous (apart from possible modeling advantages of using goals). Moni-
toring the execution for goal achievement does not add anything in that case, as
the program was already proven to satisfy the postconditions or goals.

We argue that the domain of service-oriented computing is, like agent-based
systems, a domain well-suited for using goal-oriented techniques (see, e.g., [2,
12, 1, 6] for other proposals for combining agent-oriented and service-oriented
approaches). In the service-oriented systems domain, services are called on the
basis of service descriptions without knowing anything about the internal ar-
chitecture or workings of the service. One will typically not have or be able
to obtain (formal) guarantees that the service behaves as it should. In such a
setting, one will thus always need to take into account that a service does not
behave as expected or desired. Moreover, in such a context it is more natural
than in classical settings to specify alternative plans for reaching a goal. In more
classical settings such as database applications there will typically not be alter-
native ways of reaching a desired result, e.g., in case accessing a database fails. In
service-oriented systems, on the other hand, trying alternative ways of reaching
a goal is more natural. For example, if booking a ticket with Lufthansa did not
succeed, one might try booking a ticket with KLM, or if booking a plane turns
out not to be possible as it is too expensive, one might try booking a train.

To investigate how goal-oriented techniques can be applied in the context
of service-oriented systems, we have proposed an abstract goal-oriented orches-
tration language [23] (Section 3). A natural question that arises, given that we
argue that goal-oriented techniques increase flexibility in handling failures, is
how this kind of failure handling compares to more standard exception handling
mechanisms. The aim of this paper is to answer this question. Our approach
is that we define a procedural orchestration language with an exception han-
dling mechanism inspired by that of WS-BPEL [10] (Section 4). We then show
how a program in the goal-oriented orchestration language can be translated
into a program in the procedural orchestration language that has provably the
same behavior (Section 5). We will argue that the kind of abstractions as used
in the goal-oriented orchestration language are worth considering as language
constructs of an orchestration language, as the programming patterns resulting
from the translation do not increase understandability of the code.

It is important to remark that the orchestration language of [23] is not meant
to be a full-fledged orchestration language. It is based on propositional logic, and
is used to investigate the semantic foundations2 of goal-oriented orchestration

2 “Semantic” is here meant in the sense of “semantics of programming languages”,
not in the sense of “semantic web technology”.

4

languages. The relative simplicity of propositional logic allows us to focus on the
essential aspects of such a language. This paper contributes to the investigation
of the semantic foundations of goal-oriented orchestration, and hence is also
based on the simple language [23]. We are currently investigating how we can
replace propositional logic by other logics such as description logic, to make the
language more practically useful and to facilitate more extensive experimentation
with it. We refer to [5] for the description of a goal-oriented agent programming
language and platform based on first-order logic rather than propositional logic,
which uses similar goal-oriented techniques as the ones we use in this paper.

Moreover, we remark that this paper addresses the composition of services
using orchestration languages. The idea is that the programmer specifies which
compositions are appropriate, using the constructs of the orchestration language.
At run-time, the orchestration is executed as specified. This is in contrast with
approaches to service composition based on planning (see, e.g., [14]). In the
latter approaches, a composition is generated automatically on the basis of ser-
vice descriptions and a specification of desired behavior. Nevertheless, planning
approaches and programming approaches have many commonalities, and can
sometimes be combined [16].

2 Example: Car Breakdown

In order to illustrate our approach, we use a very simple car breakdown scenario
that is adapted from the automotive case study of the SENSORIA project [25] on
service-oriented computing. We have used a variant of this scenario in [23]. In the
scenario, the car has a diagnostic system which reports a failure, resulting in the
car no longer being drivable. The car is furthermore endowed with orchestration
software that should assist the driver in getting the appropriate support by
calling, e.g., a service to get road side assistance. We assume there are also
services available for calling a taxi, for making garage appointments, for ordering
a tow truck, and for getting technical advice over the phone (this service makes
sure the driver is phoned by the appropriate technical assistant).

Using the goal-oriented orchestration language, one can specify which plan
may be executed for achieving a certain goal, under certain circumstances us-
ing so-called plan selection rules [19]. Plans essentially consist of service calls
(where the goal to be achieved through the service call is passed as a parameter,
possibly together with some additional information), subgoals (which are to be
achieved by selecting an appropriate plan by means of plan selection rules), and
a construct for sequential composition (inspired by the orchestration language
Orc [4]) that can be used for passing along the result of service calls to other
service calls. Services can be called directly by specifying the service name, or
they can be discovered by matching available service descriptions to the goal
of a service call, i.e., through semantic matchmaking. Goals to be achieved are
preceded by an exclamation mark.

In this example, we assume the driver is on his way to work, i.e., he has
“being at work” as its top-level goal. If the car is broken, he may either leave the

5

car behind and call a taxi (if he is in a hurry and near to his office), or try to get
the car repaired. There are three alternative plans for getting the car repaired:
the driver can repair the car himself with the help of technical support over the
phone (if he is a member of this service and the car is repairable on the spot),
he can get road side assistance, or have the car towed to a garage (if it is not
repairable on the spot). Below, we sketch the corresponding plan selection rules.
Plan selection rules have the form κ | β ⇒ π, which intuitively says that the
plan π can be used to reach goal κ if β is the case.

!atWork | carBroken ∧ hurry ∧ nearOffice ⇒ d(!(taxi ≤ 50 euro)) � monitor(!atWork)
!atWork | carBroken ⇒ !carRepaired � monitor(!atWork)
!carRepaired | memberTS ∧ repOnSpot ⇒ techSupport(symp, !appTA) >x>

notify(x) . . .
!carRepaired | true ⇒ d(locationCar, !roadSideAss) . . .
!carRepaired | ¬repOnSpot ⇒ !appGarage � !appTowTruck . . .

We leave out the plan selection rules for the subgoals !appGarage and
!appTowTruck for reasons of space. It may be the case that multiple plan selec-
tion rules are applicable in a certain situation. For example, if the car is broken
and the driver is in a hurry and near the office, either the first or the second
rule may be applied. In our abstract formal framework, one applicable rule is
selected non-deterministically. However, the framework may be extended with a
preference ordering over the rules. If we assume the first rule is selected, it may
be the case that discovering a taxi service fails (the “d” stands for “discovery”),
e.g., because it was not possible to find a taxi service for less than 50 euro. The
plan is then aborted and the goal of being at work has not been achieved, after
which the other applicable plan selection rule will be tried, i.e., it will be tried to
achieve the subgoal of getting the car repaired. Note that it is thus useful that
multiple plan selection rules are applicable in a certain situation, as another
plan can then be tried if one fails. The monitoring service monitors whether,
e.g., taking a taxi has resulted in the goal of being at work being achieved.

In order to achieve the subgoal of getting the car repaired, one might first
try to repair the car with help of technical support over the phone (passing the
symptoms of the car problem to the service). If contacting the technical support
service is successful, the plan continues by passing along the result to a service
that notifies the secretary of the driver about this. If calling the technical support
service fails, e.g., because it turned out the membership has expired, or the
service could not provide satisfactory support, the plan is aborted and another
plan for reaching the goal of getting the car repaired can be tried. Our goal-
oriented orchestration language tries each alternative plan to achieve a certain
(instance of a) subgoal once, in order to prevent the orchestration from getting
stuck by trying the same plans over and over to reach some subgoal.

6

A sketch of how this example could be programmed in a procedural orches-
tration language is provided below (we only show the “carRepaired” part).

carRepaired(tried1, tried2, tried3, from) ⇒ if tried1 = false ∧memberTS ∧ repOnSpot
then tried1 := true; x := techSupport(symp, !appTA);

if ¬ach(!appTA) then throw !carRepaired.planFailedExc else notify(x) . . . fi
else if tried2 = false then tried2 := true; d(locationCar, !roadSideAss);

if ¬ach(!roadSideAss) then throw !carRepaired.planFailedExc else . . . fi
else if tried3 = false ∧ ¬repOnSpot

then tried3 := true; appGarage(. . .); appTowTruck(. . .)
else throw from.planFailedExc fi fi fi

!carRepaired.planFailedExc ⇒ carRepaired(tried1, tried2, tried3, from)

The various plan selection rules for achieving a particular goal (!carRepaired in
this case) are combined into one procedure, and subgoals occurring in plans are
translated into procedure calls. After each service call, it is checked whether the
service call was successful in achieving its goal (ach(goal)). If not, an excep-
tion is thrown, as the plan should be aborted in this case. The exception han-
dler for !carRepaired.planFailedExc as specified above calls the procedure “car-
Repaired” recursively, so that another plan can be tried to achieve the goal. We
use the variables triedi to record which plans have already been tried to reach
the goal. If all plans have been tried and/or none are applicable, the exception
from.planFailedExc is thrown which is caught lower down in the procedure call
stack (in the procedure “atWork” in this case, as the procedure for repairing the
car will be called from there, as recorded in the variable from).

We believe the code of this procedural orchestration is less understandable
than the goal-oriented version, and we thus argue that goal-oriented abstractions
are worth considering as language constructs of an orchestration language.3 The
purpose of the rest of this paper is to analyze the failure handling mechanism of
the goal-oriented orchestration language in more detail, and to investigate the
relation between the goal-oriented and procedural orchestration language from
a foundational perspective by showing how an arbitrary goal-oriented orches-
tration can be translated into a procedural orchestration that has provably the
same behavior.

3 Goal-Oriented Orchestration Language

In this section, we present the syntax and informal semantics of our goal-oriented
orchestration language (Section 3.1), and the part of the formal semantics that
is relevant for failure handling (Section 3.2). For reasons of space, we cannot
provide the full semantics. We refer to [23, 22] for more details and explanation.

3 Albeit not necessarily to replace procedural programming constructs, but at least in
addition to them.

7

3.1 Syntax and Informal Semantics

Most of the ingredients of the goal-oriented orchestration language have already
been introduced informally in Section 2. Here, we provide the full syntax and
introduce the formal notation. A program in the goal-oriented orchestration
language is called an agent, which is formally a tuple 〈σ0, γ0,PS, T 〉. The initial
belief base σ0 represents what the agent believes to be the case in the world
(comparable with the state of a procedural program), and is a consistent set of
propositional formulas [19]. The initial goal base γ0 is the set of top-level goals of
the agent. Goals are deleted from the goal base if they are believed to be achieved
[19] and are typically denoted by κ. A goal can be either an achievement goal !p
(where p is an atom)4, representing that the agent wants to achieve a situation
in which p holds, or a test goal ?p, representing that the agent wants to know
whether p holds. Test goals are to be fulfilled by so-called information providing
services, and achievement goals may be fulfilled by world altering services [13].
PS is a set of plan selection rules, formally denoted as κ | β ⇒ π, where β is a
propositional formula representing a condition on the beliefs that should hold for
the rule to be applicable, and π is a plan. The function T : (BasicAction×Σ) → Σ
is a partial belief update function (where Σ is a set of belief bases) which specifies
the belief update resulting from the execution of (internal) actions by the agent.
This function is introduced as usual [19] for technical convenience.

The formal definition of the syntax of plans is given below, where x is a
variable name.

actφ ::= x | φ b ::= a | κ | snr(actφ, actκ)
actκ ::= x | κ π ::= b | b >x> π

Internal actions are typically denoted by a, and κ represents a subgoal. A service
call has the form snr(actφ, actκ), where sn is the name of the service that is to
be called (which is d if a service is to be discovered), actκ represents the goal that
is to be achieved through calling the service, and actφ is (or should be instan-
tiated with) a propositional formula representing additional information that
forms input to the service. The revision parameter r can be np (non-persistent),
meaning that the result of the service call is not stored in the belief base, or
p (persistent), meaning that the result is stored in the belief base. The result
returned from a basic plan element b is bound to the variable x, which may be
used in the remaining plan π. A plan of the form b � π is used to abbreviate a
plan b >x> π where x does not occur in π.

The mechanism of applying plan selection rules to goals in the goal base or
subgoals in plans is formalized using the notion of a stack. Each element of the
stack represents, broadly speaking, the application of a plan selection rule to
a particular (sub)goal. The initial stack element is created by applying a plan
selection rule to a top-level goal in the goal base, and other stack elements are
created every time a subgoal is encountered in the plan of the top element of a
stack. A stack element has the form (π, κ, PS), where κ is the (sub)goal to which
4 In [23], we used arbitrary propositional formulas for the representation of goals, but

for reasons of simplicity we use atoms here.

8

the plan selection rule has been applied, π is the plan currently being executed
in order to achieve κ, and PS is the set of plan selection rules that have not yet
been tried in order to achieve κ.

A stack element is popped just after a service call or an action execution if the
goal of the stack element is reached, or it is popped if the goal is unreachable,
meaning that there are no applicable plan selection rules. In the former case
the result of the service call or the part of the belief base that expresses that
the subgoal κ has been reached is returned and all occurrences of x in π are
substituted with this result. The latter case is explained in Section 3.2.

A configuration of a goal-oriented program has the form 〈σ, γ, St,PS, T 〉,
where St is the stack. The initial configuration of an agent 〈σ0, γ0,PS, T 〉 is
〈σ0, γ0, E, PS, T 〉, where E denotes an empty stack. In the transition rules, we
leave out PS and T from configurations for reasons of presentation (and these
do not change during computation).

3.2 Formal Semantics of Failure Handling

The formal semantics of our goal-oriented orchestration language is defined us-
ing a transition system [15]. A transition system for a programming language
consists of a set of axioms and transition rules for deriving transitions for this
language. A transition is a transformation of one configuration into another and
it corresponds to a single computation step. The transition rules specify how to
execute the top element of a stack.

In the goal-oriented orchestration language, a failure is not only caused by
abnormalities in trying to execute some operation, but also by being unsuccessful
in reaching a goal. In particular, if a service is called and returns some result, the
call is only considered to be successful if the goal of the service call is reached
through the result that is returned. That is, even if the service returns a “normal”
or non-exceptional result, the service call can still be regarded as having failed.
Such situations are not unlikely to occur, especially if services are automatically
discovered at run-time. It might, e.g., be the case that the service description
was not accurate, resulting in an unsatisfactory result. These kinds of failures are
typically not considered nor dealt with in more classical programming paradigms,
in which a failure or exception is normally caused by the fact that some operation
could not be executed properly.

Our goal-oriented orchestration language handles failures of service calls by
repeatedly trying to find matching services for a service call (in particular if
services are to be discovered) until the goal of the service call is reached, or
there are no more matching services.5 If the latter happens, the service call has
failed definitively, in which case the plan containing the service call is considered
to have failed and the plan is dropped.

The latter case is specified formally in Definition 1 below. The service call
construct snr(φ, κ′) (we assume variables are instantiated when the service is

5 One might argue that a comprehensive failure handling mechanism should include
compensation, but this is without the scope of this paper.

9

called) is annotated with a set of service descriptions S which represents ser-
vices that have not yet been called, and the result x0 of the last service call.
In this setting, services are assumed to return a propositional formula that ex-
presses the effect or piece of information resulting from calling a world altering
or information providing service, respectively. The predicate ach(κ, σ, xo) holds
iff the goal κ is achieved with respect to belief base σ and the service call result
x0. In case κ is an achievement goal, it is achieved if the goal follows from the
belief base after it is updated with x0. In case κ is test goal, it is achieved if the
goal or its negation follow from x0. The idea is that the belief base should not be
taken into account when evaluating the achievement of a test goal, as the idea
is that a service is called in order to check whether some piece of information is
accurate. Then it does not matter whether the agent already believes something
about this information. The predicate match(sn(φ, κ), σ, sd) holds iff the service
with service description sd matches with the service call sn(φ, κ), given the belief
base σ.

Definition 1 (plan failure)

¬ach(κ′, σ, xo) ¬∃sd ∈ S : match(sn(φ, κ′), σ, sd)

〈σ, γ, (snr(φ, κ′)[S, xo] >x> π, κ, PS)〉 → 〈σ, γ, (ε, κ, PS)〉

As plans are dropped if something goes wrong (if an internal action cannot be
executed, the plan is dropped as well), the occurrence of an empty plan in a
stack element indicates a failure. It can also be the case that a plan is completely
executed resulting in an empty plan, without occurrence of a problem with an
action execution or service call. However, this also indicates that the plan has
failed to reach the goal of the stack element, as the stack element would have
been popped immediately if its goal would have been reached after an action
execution or service call.

While the handling of failures of service calls is done by trying to call other
matching services, the handling of plan failures is done by using plan selection
rules to select alternative plans for reaching a (sub)goal. This is formally specified
by the transition rule below. Note that a plan selection rule that is applied is
removed from the set of available plan selection rules PS. Moreover, note that
the fact that we store the subgoal that the agent is trying to reach in the stack
elements facilitates the selection of alternative plans to reach this goal. If we
would not have such a representation, it would be more difficult to determine
what to do if something went wrong.

Definition 2 (apply rule after plan failure) Below, PS′ = PS \ {κ′ | β ⇒ π}.

κ | β ⇒ π ∈ PS ¬ach(κ, σ,>) σ |= β

〈σ, γ, (ε, κ, PS)〉 → 〈σ, γ, (π, κ, PS′)〉

If the plan of the top stack element is empty and there are no plan selection rules
applicable to the subgoal κ of this stack element, the subgoal is considered to
have failed definitively. Then, the top element of the stack is popped, and the plan
κ >x> π that contains κ is dropped from the new top element. Consecutively,

10

the agent can try another plan for reaching the subgoal κ′, or, if there are no
applicable plan selection rules, the stack element with subgoal κ′ is popped as
well, etc.

Definition 3 (subgoal failure)

¬∃(κ | β ⇒ π) ∈ PS : σ |= β

〈σ, γ, (ε, κ, PS).(κ >x> π, κ′, PS′)〉 → 〈σ, γ, (ε, κ′, PS′)〉

4 Procedural Orchestration Language

The main ingredients of our procedural orchestration language are standard
features of procedural languages, i.e., assignment, test, procedure call, and an
exception handling mechanism. The particular instantiations of these features
are tailored towards the translation of the goal-oriented orchestration language
in the procedural orchestration language. Further, the language includes a con-
struct for service calls, similar to the corresponding one in the goal-oriented or-
chestration language. The syntax of statements is formally defined below, where
e is an exception name, x is a variable name, and actφ, actκ as in Section 3.1.

κ ::= ?p | !p
v ::= true | false | φ | κ
t ::= φ? | (x = v)? | ach(actκ, x)? | not t | t ∧ t′

act ::= x | v
exp ::= v | κ(act1, . . . , actn) | snr(actφ, actκ) | base(actκ)
ass ::= x := exp
b ::= a | ass | t | return act | throw e
π ::= b | b; π | π + π′ | while t do π od

The language of procedure names is the same as the language of goals of the goal-
oriented orchestration language (κ). The (global) state of configurations in this
language contains a belief base as also used in the goal-oriented orchestration
language. Additionally, procedures may use local variables, typically denoted
by x. These local variables may have a value v, which is true, false, a string
denoting a formula φ, or a string denoting a procedure name κ. Tests can be
global tests on the belief base φ? (note the difference with test goals ?p, which
can only be fulfilled through service calls), local tests (x = v)? that can be used
for testing the value of a variable, or ach(actκ, x), which tests whether the goal
actκ is achieved with respect to the value of the variable x. Expressions are
values, procedure calls κ(act1, . . . , actn), service calls, or a call to a predefined
function base(actκ), which returns a conjunction of formulas from the belief base
from which actκ follows, or false if κ does not follow. Intuitively, this represents
how κ is achieved. Elementary statements can be actions to change the belief
base (as in the goal-oriented orchestration language), assignments to change the
value of local variables, tests, returning a variable, and throwing an exception.
Composed statements are formed by sequential composition, non-deterministic
choice, or a while construct.

11

The exception handling mechanism that we use is inspired by the exception
handling mechanism in the service orchestration language WS-BPEL [10]. In
WS-BPEL, exception handlers are associated with a scope of a business process.
If a fault occurs in a scope and the scope contains a matching handler, the
process specified by the handler is executed.6 If there is no handler, the exception
is passed to the enclosing scope. In the context of our procedural language, the
scope is formed by procedures, i.e., each procedure call gives rise to a new scope.
Therefore, we associate exception handlers to procedures, as defined below. A
handler contains the name of the exception that it handles, and a statement that
should be executed if the relevant exception is thrown.

Definition 4 (procedures and exception handlers) A procedure has the form
κ(x1, . . . , xn) ⇒ π. Exception handlers, typically denoted by h, have the form
e.Handler ⇒ π, where e is an exception name. A procedure definition is a proce-
dure accompanied with a possibly empty set of exception handlers, denoted by
[κ ⇒ π,H], where H is a set of exception handlers.

The semantics is defined by means of a transition system. We use stacks to
define the mechanism of calling procedures, analogously to the way this was
done for applying plan selection rules. Each stack element (π, θ, H) corresponds
to a procedure call, where π is the statement that still needs to be executed, θ is a
substitution specifying which values have been assigned to which local variables,
and H is the set of exception handlers of the procedure that was called and for
which the stack element was created. The set of handlers of a stack element does
not change during computation.

A configuration 〈σ, γ, St,P, T 〉 consists of a belief base σ and goal base γ
(together forming the global state), a stack St, a set of procedure definitions P,
and a belief update function T . The goal base is simply a set of data elements, i.e.,
it is a normal data structure that does not have the semantics of its counterpart in
the goal-oriented orchestration language. For reasons of space, we do not explain
nor define aspects having to do with updating of the goal base in this paper.
A program 〈σ0, γ0, π0,P, T 〉 has the initial configuration 〈σ0, γ0, (π0, ∅, ∅),P, T 〉.
Analogously to the goal-oriented orchestration language, we omit the procedure
definitions and the belief update function from configurations in the transition
rules below.

We only show the transition rules for exception handling, for reasons of space.
The semantics of the other constructs is as one would expect, and for formal
details we refer to [22]. The semantics of procedure calls is a simple call-by-value
semantics. The first transition rule below expresses that if an exception e is
thrown from within a stack element, and the stack element contains a handler
e.Handler ⇒ π′ for this exception, then the statement π′ is executed instead of
the statement from which the exception was thrown. If the stack element does
not contain a handler for e, the exception is passed to the stack element one
level lower in the stack.
6 Additionally, WS-BPEL has a compensation mechanism (see also [11]), which is,

however, outside the scope of this paper.

12

Definition 5 (throwing exceptions)

e.Handler ⇒ π′ ∈ H

〈σ, γ, (throw e; π, θ, H)〉 ; 〈σ, γ, (π′, θ, H)〉

¬∃h′ ∈ H ′ : h′ is of the form e.Handler ⇒ π′′

〈σ, γ, (throw e; π′, θ′, H ′).(π, θ, H)〉 ; 〈σ, γ, (throw e, θ, H)〉

5 Translation and Correctness Result

In this section, we show how the goal-oriented orchestration language can be
translated to a procedural orchestration. This translation shows, first of all, how
goal-oriented orchestration, and in particular its failure handling mechanism,
is related to a more standard procedural orchestration language and its excep-
tion handling mechanism. Moreover, it shows that the programming patterns
resulting from the translation do not increase understandability of the code. As
stated in [7] in a more general context, the problem with programming patterns
is that “they are an obstacle to an understanding of programs for both human
readers and programming-processing programs”.7 We thus argue that the kind
of abstractions as used in the goal-oriented orchestration language are worth
considering as language constructs of an orchestration language. As our proce-
dural orchestration language and WS-BPEL are comparable in the sense that
they have a similar exception handling mechanism, and both are imperative lan-
guages without goal-oriented constructs, we conjecture that an implementation
of goal-oriented orchestration patterns in WS-BPEL will be similarly involved
as in our procedural orchestration language.

In this paper we present the most important parts of the translation, i.e.,
the translation of plan selection rules and the translation of plans. For the full
technical details of the translation, we refer to [22].

Definition 6 (translating plan selection rules) Without loss of generality, as-
sume that variables in the goal-oriented orchestration language are not the re-
served variables triedi. Let PS be a set of plan selection rules. Let PSκ be defined
as {κ | β ⇒ π : κ | β ⇒ π ∈ PS} and let n = |PSκ |. We assume an ordering on
the elements of PSκ as follows: {κ | β1 ⇒ π1, . . . , κ | βn ⇒ πn}. The translation
function t for translating PSκ into one procedure definition is defined as follows.

[κ(tried1, . . . , triedn, from) ⇒
this := κ;
(+1≤i≤n((triedi = false)? ∧ βi?; triedi := true; uκ(πi); [αfail] throw κ.planFailedExc) +
(not

V
1≤i≤n((triedi = false)? ∧ βi?); [αfail] throw from.planFailedExc)),

{κ.planFailedExc.Handler ⇒ xf := κ(tried1, . . . , triedn, from); return xf}]

7 The term “programming patterns” should not be confused with “design patterns”.
While the former are computational in nature, the latter are concerned with software
architecture.

13

The example in Section 2 already hints at how a translation of a goal-oriented
orchestration into a procedural one might be defined. That is, all plan selection
rules for a certain goal are translated into one procedure that has this goal as
the procedure name. The body of the procedure resulting from the translation
of a set of plan selection rules, broadly speaking, consists of a non-deterministic
choice between the translated plans of the relevant plan selection rules, guarded
by tests on the belief base corresponding with the guards of the plan selection
rules.8 The translation of plans is specified through the function uκ (Definition
7).

Each situation of failure of the goal-oriented orchestration language as an-
alyzed in detail in Section 3.2, corresponds to the throwing of an exception in
the procedural language. That is, we throw a planFailedExc if a plan has been
executed completely, as this means that the goal to be achieved by this plan
was not reached. Further, a planFailedExc is thrown if all plans have been tried
and/or none are applicable (as the belief condition does not hold), corresponding
to subgoal failure (Definition 3). The throwing of an exception in case a service
call fails is specified in Definition 7.

We annotate each planFailedExc with the name of the procedure in which
the exception should be handled. The exception should be handled either in the
procedure κ from which it was thrown (in case another plan should be selected
for achieving the goal of the procedure), or in the procedure from which κ was
first called (as passed to κ through the variable from). The latter case represents
the failure of a subgoal, and it corresponds to the popping of a stack element in
the goal-oriented orchestration language (Definition 3).

We associate with each procedure κ a handler for the exception
κ.planFailedExc. This handler specifies that the procedure should be called re-
cursively with the variables triedi (representing which plans have already been
tried) as parameters. This recursive call makes sure that if a plan fails, another
plan is tried which has not been tried yet (Definition 2).

Note that the programmer thus needs to program the throwing of exceptions
and their handlers explicitly in the procedural orchestration language, while the
identification of situations of failure and the consecutive course of action is part
of the semantics of the goal-oriented orchestration language. The next definition
specifies the function uκ, which translates plans of the bodies of plan selection
rules with head κ into statements of the procedural language. The function is
also used to translate the plan of a stack element with subgoal κ.

Definition 7 (translating plans to statements) We define a function uκ(π)
where κ is the head of the plan selection rule of which the body π is translated,
or the goal of the stack element containing π. Let PSκ′ = {κ′ | β′ ⇒ π′ :
κ′ | β′ ⇒ π′ ∈ PS}, let n′ = | PSκ′ |, let false1,...,n′ be a vector of length
n′ of parameters being the value false, let SO be the set of available service
8 In the example we used if-then-else constructs rather than non-deterministic choice,

but in order to make the translation correct, we need non-deterministic choice to
match the non-determinism of the goal-oriented orchestration language in selecting
plan selection rules.

14

descriptions, and let sdsn be the service description of the service called for
service call snr(actφ, actκ′).

uκ(κ′ >x> π) = ((ach(κ′)?; x := base(κ′)) +
(not ach(κ′)?; x := κ′(false1,...,n′ , κ))); uκ(π)

uκ(a � π) = a; ((ach(κ)?; x := base(κ); return x) + (not ach(κ)?; uκ(π)))
uκ(snr(actφ, actκ′) >x> π) = x := base(actκ′);

((ach(actκ′ , x); uκ(π)) + (not ach(actκ′ , x)?; S := SO;
while not ach(actκ′ , x) do x := snr(actφ, actκ′);
((x = nomatch)?; throw κ.planFailedExc) +
(not(x = nomatch)?; S := S \ {sdsn}) od);
((ach(κ, x)?; return x) + (not ach(κ, x)?; uκ(π)))

A subgoal κ′ >x> π is translated into a non-deterministic choice, followed by
the translation of π. The non-deterministic choice expresses that if the goal κ′

is already reached before calling the procedure κ′, x gets a value through the
function base(κ′). If κ′ is not yet achieved, the procedure κ′ is called, which
returns a value (a propositional formula) that expresses how κ′ was achieved or
an exception in case κ′ could not be achieved. The actual parameters for the
procedure κ′ are a series of false values, expressing that no plans have yet been
tried to reach κ′, and the last parameter is the subgoal κ, which is the goal to be
reached through execution of the statement uκ(κ′ >x> π) (as we are translating
plan selection rules with head κ). The translation of an action a expresses that
a should be executed, and, depending on whether the goal κ is reached, the
orchestration returns or continues with the execution of uκ(π). The translation
of a service call snr(actφ, actκ′) defines that matching services are called until
actκ′ is reached, or there are no more matching services. If the latter is the case,
a planFailedExc is thrown (corresponding to Definition 1).

Using the translation functions as defined above, we have defined a function v
(see [22] for its definition) for translating agents of the goal-oriented orchestration
language into procedural programs in the procedural orchestration language.
This function v uses the function t of Definition 6 to translate plan selection rules
to procedures. Moreover, an initialization procedure is added, which is called
from the initial statement of the resulting procedural program. The purpose of
the initialization procedure is to initiate the pursuit of goals of the goal base.
Furthermore, the procedure is defined such that the program terminates if the
goal base is empty.

We show, broadly speaking, that an agent in the goal-oriented orchestration
language has the same behavior as its translation in the procedural orchestration
language. We do this by showing that each run of an agent A has a matching
run of agent v(A) and vice versa. A run of A matches a run of v(A), loosely
speaking, if each configuration of the former has a matching configuration in the
latter (in the right order). Each transition in a run of A is matched by a series
of transition in a run of v(A), i.e., not each configuration of a run of v(A) has a
matching configuration in the corresponding run of A.

The definition of when a procedural configuration matches a goal-oriented
configuration is provided by a function z (see [22] for its definition), which trans-

15

lates a configuration of the procedural orchestration language into a configu-
ration of the goal-oriented language. The function cannot be defined the other
way around, as procedural configurations contain certain implementation details
that do not have a counterpart in goal-oriented configurations. The function z
translates in particular procedural stacks into goal-oriented stacks by translat-
ing statements of stack elements to plans (using the inverse of the function uκ).
The function uses the substitution of stack elements to determine the goal of
the resulting goal-oriented stack element and to determine which plan selection
rules have not yet been tried to reach the goal.

The correctness of the translation is formulated formally below. We refer to
[22] for the proof.

Theorem 1 Let A be a program in the goal-oriented orchestration language
with initial configuration c0 and v(A) the translation of A. Then it holds for any
run c0 → c1 → . . . that there exist indices 0 = p0 < p1 < . . . and configurations
d0, d1, . . . such that d0 ; d1 ; . . . is a run in the procedural orchestration
language, d0 is the initial configuration of v(A), and for all pi with i ≥ 0 it holds
that z(dpi) = ci.

Let P be a program in the procedural orchestration language with initial
configuration d0 such that there is some program A of the goal-oriented orches-
tration language with v(A) = P . Then it holds for any run d0 ; d1 ; . . . that
there exist indices 0 = p0 < p1 < . . . and configurations c0, c1, . . ., such that
c0 → c1 → . . . is a run in the goal-oriented orchestration language, c0 is the
initial configuration of A, and for all pi with i ≥ 0, it holds that z(dpi) = ci.

6 Conclusion

In this paper, we have shown how the goal-oriented orchestration language of
[23] can be correctly translated to a procedural orchestration language. As we
have argued that the failure handling mechanism of the goal-oriented orches-
tration language is one of its main advantages, it is important to investigate
whether a similar mechanism cannot be implemented just as easily in a more
traditional language. As we have shown, however, the translation is non-trivial
and the programming patterns resulting from the translation do not increase un-
derstandability of the code. We thus argue that the kind of abstractions as used
in the goal-oriented orchestration language are worth considering as language
constructs of an orchestration language.

We are currently working on the extension of the goal-oriented orchestration
language towards more practically usable versions, e.g., by making use of descrip-
tion logic instead of propositional logic. This will allow us to experiment with
the language in order to further investigate the usefulness of such a language in
the domain of service orchestration. The usefulness of goal-oriented abstractions
will not only have to be investigated on the level of orchestration languages, but
also on the modeling level. One possible direction for future research is to inves-
tigate whether the KAOS goal-oriented requirements engineering methodology
[18] can be adapted to fit the goal-oriented orchestration language.

16

References

1. M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella. Interaction
protocols and capabilities: A preliminary report. In Principles and Practice of
Semantic Web Reasoning, 4th International Workshop (PPSWR’06), pages 63–77,
2006.

2. L. Bozzo, V. Mascardi, D. Ancona, and P. Busetta. CooWS: Adaptive BDI agents
meet service-oriented programming. In Proceedings of the IADIS International
Conference WWW/Internet 2005, volume 2, pages 205–209. IADIS Press, 2005.

3. L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal representation for
BDI agent systems. In Programming multiagent systems, second international
workshop (ProMAS’04), volume 3346 of LNAI, pages 44–65. Springer, Berlin, 2005.

4. W. R. Cook and J. Misra. Computation orchestration: A basis for wide-area com-
puting, 2007. To appear in the Journal on Software and System Modeling.

5. M. Dastani, M. B. van Riemsdijk, and J.-J. Ch. Meyer. Programming multi-
agent systems in 3APL. In R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah
Seghrouchni, editors, Multi-Agent Programming: Languages, Platforms and Appli-
cations. Springer, Berlin, 2005.

6. I. Dickinson and M. Wooldridge. Agents are not (just) web services: considering
BDI agents and web services. In Proceedings of the 2005 Workshop on Service-
Oriented Computing and Agent-Based Engineering (SOCABE’2005), Utrecht, The
Netherlands, 2005.

7. M. Felleisen. On the expressive power of programming languages. In N. Jones, edi-
tor, ESOP ’90 3rd European Symposium on Programming, Copenhagen, Denmark,
volume 432, pages 134–151. Springer-Verlag, New York, N.Y., 1990.

8. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent
programming with declarative goals. In Intelligent Agents VI - Proceedings of
the 7th International Workshop on Agent Theories, Architectures, and Languages
(ATAL’2000), Lecture Notes in AI. Springer, Berlin, 2001.

9. J. F. Hübner, R. H. Bordini, and M. Wooldridge. Declarative goal patterns for
AgentSpeak. In Proceedings of the Fifth International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS’06), 2006.

10. M. Juric, P. Sarang, and B. Mathew. Business Process Execution Language for
Web Services 2nd Edition. Packt Publishing, 2006.

11. R. Lucchi and M. Mazzara. A pi-calculus based semantics for WS-BPEL, 2006. To
appear in Journal of Logic and Algebraic Programming (JLAP), Elsevier press.

12. V. Mascardi and G. Casella. Intelligent agents that reason about web services: a
logic programming approach. In Proceedings of the ICLP’06 Workshop Workshop
on Applications of Logic Programming in the Semantic Web and Semantic Web
Services (ALPSWS2006), pages 55–70, 2006.

13. S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web services. IEEE Intelligent
Systems, 16(2):46–53, 2001.

14. M. Pistore, P. Traverso, and P. Bertoli. Automated composition of web services
by planning in asynchronous domains. In Proceedings of the fifth international
conference on automated planning and scheduling (ICAPS’05), pages 2–11, 2005.

15. G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus, 1981.

16. S. Sardina, L. P. de Silva, and L. Padgham. Hierarchical planning in BDI agent
programming languages: A formal approach. In Proceedings of Autonomous Agents
and Multi-Agent Systems (AAMAS’06), pages 1001–1008, Hakodate, Japan, 2006.
ACM Press.

17

17. J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and avoiding interference
between goals in intelligent agents. In Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI 2003), 2003.

18. A. van Lamsweerde and E. Letier. From object orientation to goal orientation: a
paradigm shift for requirements engineering. In Radical Innovations of Software
and Systems Engineering in the Future: 9th International Workshop (RISSEF’02),
volume 2941 of LNCS, pages 325–340, London, UK, 2004. Springer-Verlag.

19. M. B. van Riemsdijk. Cognitive Agent Programming: A Semantic Approach. PhD
thesis, 2006.

20. M. B. van Riemsdijk, M. Dastani, J.-J. Ch. Meyer, and F. S. de Boer. Goal-oriented
modularity in agent programming. In Proceedings of the fifth international joint
conference on autonomous agents and multiagent systems (AAMAS’06), pages
1271–1278, Hakodate, 2006.

21. M. B. van Riemsdijk, W. van der Hoek, and J.-J. Ch. Meyer. Agent program-
ming in Dribble: from beliefs to goals using plans. In Proceedings of the second
international joint conference on autonomous agents and multiagent systems (AA-
MAS’03), pages 393–400, Melbourne, 2003.

22. M. B. van Riemsdijk and M. Wirsing. Goal-oriented and procedural service orches-
tration: A formal comparison, 2007. http://www.pst.ifi.lmu.de/~riemsdijk/

goalproc.pdf.
23. M. B. van Riemsdijk and M. Wirsing. Using goals for flexible service orchestra-

tion: A first step. In J. Huang, R. Kowalczyk, Z. Maamar, D. Martin, I. Mueller,
S. Stoutenburg, and K. Sycara, editors, Service-Oriented Computing: Agents, Se-
mantics, and Engineering (SOCASE’07), volume 4504 of LNCS, pages 31–48, 2007.

24. M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and proce-
dural goals in intelligent agent systems. In Proceedings of the eighth international
conference on principles of knowledge respresentation and reasoning (KR2002),
Toulouse, 2002.

25. M. Wirsing, A. Clark, S. Gilmore, M. Hölzl, A. Knapp, N. Koch, and A. Schroeder.
Semantic-based development of service-oriented systems. In Formal Techniques for
Networked and Distributed Systems (FORTE’06), volume 4229 of LNCS, pages 24–
45. Springer-Verlag, 2006.

18

Argonaut: Integrating Jason and Jena for context
aware computing based on OWL ontologies

Douglas Michaelsen da Silva1, Renata Vieira1

1 Universidade do Vale do Rio dos Sinos
Av. Unisinos, 950 - CEP 93.022-000 São Leopoldo - RS - Brasil

michaelsen@gmail.com, renatav@unisinos.br

Abstract. In this paper, we present the integration of the agent-oriented
programming framework Jason and the semantic web framework Jena to
support ontology-based context aware computing. These technologies together
allow for the development of context aware multi-agent systems base on
ontologies that describe context.

Keywords: Semantic Web, Ontologies, Agents, Context aware computing.

1 Introduction

The Semantic Web project and the related development of applications that make use
of knowledge resources are attracting much of current research interest. The Semantic
Web proposed technologies are also proving adequate as a basis for other important
areas of Computer Science such as Ubiquitous Computing [3]. These new computing
technologies are changing the way users interact with applications. These changes are
due to the fact that users, devices and applications are given mobility. In this scenario,
context awareness is a relevant requirement for applications. The computational
representation of context is thus a growing field of research and technology
development. Semantic Web technologies currently available, such as description
logic based ontologies and intelligent agents are promising solutions for context
representation and manipulation. These technologies allow pro-active contextual help
and guidance for mobile users and applications.

Although applications for the Semantic Web are already being proposed, often
based on agents paradigm, most of such efforts does not consider proper agent-
oriented programming languages. Besides, web ontology languages and agent
oriented programming languages have both been developed independently from each
other. On the other hand, the integration of such agent oriented programming
languages, such as AgentSpeak [1], with automatic reasoning over ontologies can
have a major impact on the development of agents and multi-agent systems that can
operate in a SemanticWeb context. In fact, the theoretical aspects of such integration
have been already proposed [5]. However, the practical integration of such
technologies for developing real applications is still a challenge.

19

In this work, as a first approach to explore the integration of these technologies in
a practical way, for the development of typical mobile computing applications, we
show an AgentSpeak/Jason1 prototype in which BDI agents access an OWL ontology
through the Jena framework2. The prototype implements agents that help users to find
out about locally situated services.

The paper is organized as follows: Section 2 presents an ontology that describes
contextual information; Section 3 presents an overview of the agent programming
language AgentSpeak; Section 4 presents the integration of Jason and Jena for a
context aware application prototype; Section 5 concludes the paper.

2 Argonaut Ontology

Among the key components of the Semantic Web are domain ontologies [7]. They
are the proposed model for knowledge resources, underlying specific web languages.
Ontologies are therefore the component responsible for the specification of the
domain knowledge. As they can be expressed logically, they allow for reasoning in
the specified domain. Indeed, several ontologies are being proposed for the
development of a large variety of applications [2, 3].

OWL is a language developed for representing ontology information on the
semantic web. OWL is based on descriptions logics which are appropriate for
ontological reasoning. OWL can be used to describe concepts and their relationships
as well as specific properties and restrictions through logical axioms. According to
different underlying logics, there are three versions of OWL: OWL Full, OWL DL
and OWL Lite.

OWL ontologies have been developed for ubiquitous and pervasive applications;
the SOUPA ontology is an example [2]. It was designed to support mobile
applications, its vocabulary is derived from other existing ontologies, some examples
are: FOAF, an ontology for personal relationship information, people and their basic
data such as address, phone number, e-mail, etc; DAML-Time, an ontology for
common knowledge about time and temporal events; Spatial ontologies (such as
OpenCYC and RCC) for spatial concepts and reasoning about localization.

Since ontologies are to be shared and reused, we developed a small ontology by
adapting some of the main concepts and relations of SOUPA. We created instances
corresponding to a university environment. The main concepts adapted were Person,
Geographic Space and their subclasses. New concepts were created to accommodate
the application we had in mind. The new concepts are service and distance. We used
Protégé [4] and its OWL plugin to build the ontology that is the basis of our
application. The classes Person and Service describe, respectively, the users of the
application and the services provided in different regions of the campus. The relation
“at” (for is situated at), shown in Figure 1, holds for persons and services with
geographical spaces.

1 http://jason.sourceforge.net/
2 http://jena.sourceforge.net/

20

Fig. 1. Relationships among concepts.

The concept GeographicalSpace can be specialized as GeographicalRegion,
FixedStructure (used for buildings) and SpaceInAFixedStructure (used for rooms). A
geographical space may be spatially subsumed by another one. For example, a fixed
structure can be spatially subsumed by a geographical region and can spatially
subsume a space in fixed structure. For example, buildings can be situated in a
campus and they can contain rooms. The concept Distance relates to geographical
spaces through the relations “from” and “to”. All instances of this concept represent a
distance between two spaces. In a specific situation we could have the user Maria,
who is an instance of Person. She is located at LabOne which in turn is a
SpaceInAFixedStructure. The instance BuildA spatially subsumes the instance
LabOne and is spatially subsumed by instance CentreX. In this situation agents that
perceive the presence of Maria in LabOne can infer that Maria is at BuildA in
CentreX.

3 AgentSpeak

As ontologies, agents are also considered a fundamental component of the
semantic web. Agents are responsible for helping the users in their service requests.
They can make use of the available knowledge; autonomously interact with other
agents, so as to act on the user’s interest. Of course, on the view of the Semantic Web
agents can only achieve these requirements by sharing domain ontologies.

Here we consider the agent oriented programming language AgentSpeak. Jason is
the interpreter for AgentSpeak, which is available Open Source under GNU LGPL at
http://jason.sourceforge.net. It implements the operational semantics of AgentSpeak
given in [8]. AgentSpeak provides an elegant abstract framework for programming
agents. An AgentSpeak agent (or program) is defined by a set of beliefs, which is a
set of ground (first-order) atomic formulas, and a set of plans which form its plan
library. AgentSpeak distinguishes two types of goals: achievement and test goals.
Achievement goals are formed by an atomic formula prefixed with the ‘!’ operator,
while test goals are prefixed with the ‘?’ operator. An achievement goal states that the
agent wants to achieve a state of the world (and it will look for a stated plan in his
plan library for that). A test goal states that the agent wants to test whether the
associated atomic formula is (or can be unified with) its beliefs. Being a reactive

21

planning system, the events it reacts to are related either to changes in its beliefs due
to perception of the environment, or to changes in the agent’s goals that originate
from the execution of plans triggered by previous events. A triggering event can
trigger the execution of a particular plan. Plans are written by the programmer so that
they are triggered by the addition (‘+’) or deletion (‘-’) of beliefs or goals (the “mental
attitudes” of AgentSpeak agents). These elements are exemplified in Figure 2.

 Consider a scenario where a student or academic visitor is walking around the
university campus. The student may be notified about locally available services, or
scheduled invited talks, according to the user’s preferences. In the example (Figure 2)
we show some AgentSpeak plans for this scenario.

+lecture(A,V,T) : interested_in(U,A)
 !inform(U,A,V,T)

+!inform(U,A,V,T) : ¬busy(U,T)
 show(U,A,V,T)…

Fig. 2. Examples of AgentSpeak plans.

The first plan tells us that, when a lecture A is announced at venue V and time T
(so that, from the perception of the context, a belief lecture(A,V,T) is added to the
belief base of the agent), then if a user U is interested in A, it will have the new goal
of inform interested users for that lecture. The second plan tells us that whenever this
agent adopts the goal of informing users about lectures, if it is the case that the user is
not busy at T, according to his agenda, then it can proceed to execute that plan
consisting of performing the basic action show(U,A,V,T) (assuming that it is an
atomic action that the agent can perform). This brief introduction will help to guide
the reading of the next section, in which we present our prototype. More details about
AgentSpeak can be found in [1].

4. The Argonaut prototype

Argonaut is a multi-agent system that integrates Jason and Jena in order to allow
agents to interact on the basis of contextual knowledge represented in an OWL
ontology. Jason provides the means for the specification of the environment in which
the agents actuate. In the specified environment, agents perceive the user and user
requests, they communicate with each other to provide the user information relative to
their distance to required services. Through some defined internal actions the agents
consult an OWL ontology that contains contextual information. The interaction with
the OWL ontology is done through the Jena framework.

Our scenario is such that the user is located somewhere in the university campus
and he intends to know about the available services nearby. He also intends to know
the distance from his location to some required service (library, food court, computers
lab, shops, etc). The mobile device is perceived by a server and the local interface
agent communicates with him offering the locally available services. When the local
interface agent perceives the arrival of the user, it greets him and then shows him the

22

locally available services. The user selects one service, the interface agent then asks
about the location of the selected service to the location agent. The location agent
gets the service and the user location and queries the distance between the user and
the service, returning it to the interface agent. The interface agent shows to the user
his distance from the required service.

In our prototype the presence of the user is simulated, the service selection is done
through the user interface and they are external events that occur in the environment.
The interface agent perceives the user selection and communicates with the location
agent, which is responsible for consulting the context ontology. Events and actions
are implemented in Jason. External events are the user arrival, which is perceived by
the environment, and the selection of one available service, made by the user. Internal
actions do not modify the environment, in the Argonaut they are responsible for
consulting the OWL ontology through the Jena framework. Queries to the ontology
return contextual information which is added in the agents’ belief base.

The system overview [6] is illustrated in Figure 3. Events are represented by stars
and actions by arrows. The two actions named with jena corresponds to internal
actions of the agents for querying the contextual OWL ontology. The result for such
queries is contextualized information that is stored in the agents’ belief bases.

Fig. 3. Argonaut system overview.

The agents are named localization and user_interface, there is a local interface for
each University Institute. Each Institutue, or region of the University, would delegate
an agent to serve as its local service interface. In this way, each locally perceived user
is tied to a local user interface agent. The prototype follows a MVC (Model View
Controller) architectural pattern. The model-view-controller separates data access and
business logic from data presentation and user interaction, by introducing an
intermediate component: the controller. The environment where the agents actuate
corresponds to the Controller module, which is also an observer to the other modules.
It is necessary because each event that happens in the View or in the Model need to be
handled by the Jason environment. Therefore, the Model module implements the
consults to the ontology, which are made through RDQL/Jena, and the View module
is responsible for the interface of the prototype, implementing some functionality to
handle graphical configurations.

23

These two modules implement the observable class that notifies the environment
when something happens. In this case, when there are relevant plans to deal with
events they are activated. An example is when a service is selected by the user, the
environment is notified, the agent perceives this change and the corresponding plan is
activated, as explained below.

In Jason, the environment is responsible for providing events (perceptions) to the
agents, in our prototype these events are the presence of the user and the selection for
a service made by the user through the graphical interface. The available services are
described in the ontology and they are presented to the user by the interface agent.

Next we describe the plans of the user_interface agent (Figure 4). A belief about
the presence of the user is added to the belief base of the agent. This triggers the plan
for the arrival of a new user, a plan to show the available services. The second plan is
triggered when the user selects a service. First, an action to exhibit the selected
service is executed. A test goal identifies who is the user perceived, then an achieve
message is sent to the localization agent, so that an appropriate plan of the localization
agent is triggered.

Fig. 4. User_interface agent.

The localization agent (Figure 5) executes the plan with two internal actions: an
action that consults the ontology and queries the distance between the user and the
agent; and a .send action to return the resulting distance to the agent that sent the
achieve message. This tell message will cause a belief addition in the belief base of
the user_interface agent, triggering the plan for showing the retrieved distance to the
user.

Fig. 5. Localization agent.

In our prototype, the locally available services and distance between locations are
described in the OWL ontology. Ontology queries are done with Jena, an open source

+!getDistance(User, Service)[source(SAg)] : true
<-
ont.GetDistance(User, Service, Distance);
.send(SAg, tell, distance(Distance)).

+userWasPerceived(User):
<- ont.GetServices(Centre,S);
showServices(S).

+selected(Service) : true

<- .print(Service);
?userWasPerceived(User);
.send(localization, achieve,
getDistance(User, Service)).

+distance(D) : true <- showDistance(D).

24

Java framework for building Semantic Web applications. It has an API that aims to
provide a consistent programming interface to the semantic web application
developer. It provides an environment for querying ontologies and includes a rule-
based inference engine. Consults using RDQL3 (RDF Data Query Language) are
done using this model. RDQL consists in a graph of triples. Each triple contains
variables which are instantiated with the corresponding required values.

The localization agent executes the action GetDistance that returns the distance
between the user and the requested service. For example, Maria is at LabOne, which
is subsumed by BuildA. The coffe service is located at LabTwo which is subsumed by
BuildC. These identifications are necessary because, in our model, the distances are
defined between instances of FixedStructure (buildings). The localization agent’s
returns the distance which is added to the belief base of the user_interface agent. Then
the user_interface agent shows the distance to the user.

5 Conclusions

In this paper we have shown a practical prototype that integrates BDI agents with
the Semantic Web framework Jena. This integration was proposed to deal with the
dynamic nature of mobile computing applications. Agents in the environment in
which the user is located communicate with the user personal agent to inform about
locally situated services. Contact with the user can be triggered by matching the user
profile and context description. Ontologies are well suited for providing such profile
and context descriptions. They represent the required knowledge in a structured and
organized way, allowing inference for integrating user’s goals with the context
features. Also, this knowledge can be both queried and modified by agents.

In [5] AgentSpeak with underlying ontological reasoning was first proposed and
formalized. That extension was shown to have the following effects: (i) more
expressive queries to the agent belief base; (ii) refined belief update, new beliefs can
only be added if the resulting belief base is consistent with the concept description;
(iii) more flexible plan search based on the subsumption relation between concepts;
and (iv) knowledge sharing by using web ontology languages such as OWL. In that
paper, it was shown how extending an agent programming language with the
descriptive and reasoning power of description logics can have a significant impact on
the way agent-oriented programming works in general and in particular for the
development of Semantic Web applications using the agent-based paradigm.
However, the practical development of that previous proposal would require changes
in the current AgentSpeak framework (Jason).

The Jason/Jena integration proposed and illustrated here is, of course, a much
simpler approach from what was proposed in that work. However, one advantage of
our proposal is that it allows the use of OWL ontologies without any modification or
redefinition in the currently available frameworks. The prototype has shown the main
components of such an architecture, which can be exploited for more elaborated
applications in future work. For example, we haven’t fully explored inference and

3 http://www.w3.org/Submission/RDQL/

25

reasoning that is provided by the Jena framework. For now we have only used RDQL
to query an OWL knowledge basis. In fact, with this first prototype we have only
accounted for the improvements referred to in (i) and (iv) above. We believe that
points (ii) and (iii) could as well be pursued through a deeper integration of the
technologies that we have adopted here.

Our prototype implements a fairly simple application, which serves mainly to the
purpose of illustrate the potentiality that these technologies bring about when they are
put together, being a first practical approach integrating OWL, Jason and Jena. For
now, when executing the Argonaut, the presence of a user is simulated. Ideally, that
is, in a real implementation, this perception would happen through sensors located at
different locations. Also, in a more sophisticated implementation, the agents could be
distributed over a network. The View module could be customizable based on
information retrieved from the ontology, in a contextualized way, considering the user
profile and device characteristics. For this, an ontology extension would be required.
Other similar interesting applications could be explored for the presented prototype,
such as, for instance, cars communicating with available services in the road.

References

1. Bordini, R., Hubner, J. and Wooldridge, M.: Programming AgentSpeak Agents with
Jason. John Wiley & Sons. 288p (2007).

2. Chen, H., Chen, H., Perich, F., Finin, T., Joshi, A: SOUPA: Standard Ontology for
Ubiquitous and Pervasive Applications, In Proceedings of the First Annual
International Conference on Mobile and Ubiquitous Systems: Networking and
Services (Mobiquitous 2004), Boston, MA, August (2004).

3. Chen, H., Chen, H., Perich, F., Chakraborty, D., Finin, T., Joshi, A.: Intelligent
agents meet the semantic web in smart spaces. IEEE Internet Computing, 19(5):69–
79, November/December 2004.

4. Horridge, M., H. Knublauch, A. Rector, R. Stevens, C. Wroe.: A Practical Guide To
Building OWL Ontologies Using the Protégé-OWL Plugin and CO-ODE Tools,
Technical Report, Ed. 1.0, The University Of Manchester (2004).

5. Moreira, A., Vieira, R., Bordini, R., Hubner, J.: Agent-Oriented Programming with
Underlying Ontological Reasoning. In: Declarative Agent Languages and
Technologies III: Third International Workshop, Utrecht, The Netherlands, Selected
and Revised Papers. Vol. 3904, pp. 155--170. Springer, Berlin (2006)

6. Padgham, L. and Winikoff, M.: Prometheus: A Methodology for Developing
Intelligent Agents. LNCS, vol. 2585, pp. 174--185. Springer (2003)

7. Staab, S. and Studer, R. (eds.): Handbook on Ontologies. International Handbooks on
Information Systems. Springer-Verlag, Berlin–Heidelberg (2004)

8. Vieira, R., Moreira, A., Bordini, R. and Wooldridge, M.: On the Formal Semantics of
Speech-Act Based Communication in an Agent-Oriented Programming Language.
Journal of Artificial Intelligence Research, Vol 29, p. 221-267 (2007)

26

Agent Societies and Service Choreographies: a
Declarative Approach to Specification and

Verification

Federico Chesani1, Paola Mello1, Marco Montali1, and Sergio Storari2

1 DEIS, University of Bologna - Viale Risorgimento 2 - 40136 Bologna, Italy
{fchesani|pmello|mmontali}@deis.unibo.it

2 ENDIF, University of Ferrara - Via Saragat 1 - 44100 Ferrara, Italy
strsrg@unife.it

Abstract. The need for specifying choreographies when developing ser-
vice oriented systems recently arose as an important issue. Although
declarativeness has been identified as a key feature, several proposed ap-
proaches model choreographies by focusing on procedural aspects, e.g. by
specifying control and message flows of the interacting services. A similar
issue has been addressed in Multi-Agent Systems (MAS), where declara-
tive approaches based on social semantics have been used to capture the
nature of agents interaction without over-constraining their behavior.
In this paper we show how DecSerFlow can be mapped to SCIFF in an
automatic and complete way. DecSerFlow is a graphical language capable
to model in an intuitive and declarative fashion service flows, whereas
SCIFF is a framework based on abductive logic programming originally
developed for dealing with social interactions in MAS. By means of a
running example, we show how the conjunct use of both approaches
could be fruitfully exploited to declaratively specify and verify service
choreographies.

1 Introduction

The service oriented paradigm and the related technologies for implementing
and interconnecting basic services are reaching a good level of maturity and a
widespread adoption. Nevertheless, modeling service interaction from a global
viewpoint, i.e. representing service choreographies, is still an open challenge [1].
Indeed, the need for specifying choreographies when developing service oriented
systems recently arose as an important issue.

As pointed out in [1, 2], the current major proposals for modeling service
interaction, such as WS-BPEL [3] and WS-CDL [4], miss to tackle some key
concepts. As a consequence of the adoption of a “global view” (which inherently
crosses organizational boundaries and should be consequently independent from
the perspective of single participants), declarativeness becomes a fundamental
requirement. Each organization perceives a choreography as a public contract
which provides the rules of engagement for making all the interacting parties

27

correctly collaborate, without stating how such a collaboration is concretely car-
ried out; in our view, this latter information should be kept private in the entities’
definition/implementation, and not directly addressed at the choreography level.

The main problem is that, although declarativeness has been identified as
a key feature, several proposed approaches model choreographies by focusing
on procedural aspects, e.g. by specifying the control and message flow of the
interacting services. This often causes the modeler to miss the real focus of the
choreography, leading to over-constrain the choreography under study and to
consequently loose some acceptable interactions.

To overcome these limits, van der Aalst and Pesic have proposed DecSerFlow
[5], a truly declarative graphical language for the specification of service flows.
DecSerFlow adopts a more general and high-level view of services specification,
by defining them through a set of policies or business rules. It does not give a
complete and procedural specification of services, but concentrates on what is the
(minimal) set of constraints to be fulfilled in order to successfully accomplish the
interaction. Beyond its appealing graphical representation, DecSerFlow concepts
have an underlying semantics in terms of Linear Temporal Logic (LTL).

The issue about what information should be captured or left out by the global
view of interaction has been (and is still) matter of discussion also in the MAS
research community, and in both settings we find similar efforts and proposed
solutions. Therefore, it is not surprising that multi-agent and service-oriented
systems share many similarities [6] (see Table 1).

MAS SOA
interacting agents autonomous heterogeneous

agents
autonomous heterougeneous
services

communication communicative acts messages
local view of interaction (external) agents policies behavioral interfaces
global view of interaction global interaction protocols choreographies

Table 1. Some similarities between multi-agent and service-oriented systems

When dealing with the problem of modeling global interaction protocols
within a MAS, we mainly find two complementary approaches, as in the case of
choreographies: approaches with aim to exactly specify how the interaction pro-
tocol should be executed by the interacting agents (such as for example AUML
[7]), and approaches which consider MAS as open societies and model interac-
tion protocols as a way to declaratively constrain the possible interactions. So-
cial approaches abstract away from the nature of interacting entities, supporting
heterogeneity, and adopt an open perspective, i.e. let participants autonomously
behave as they want, where not explicitly forbidden. Furthermore, their aim is
not only to support the specification task, but also to define a precise seman-
tics of interaction, enabling the possibility to perform verification tasks. Many
prominent works center around the concept of commitment in social agencies,
to represent the state of affairs during the social interaction. For example, in

28

[8] the semantics of communicative acts is defined by means of transitions on a
finite state automaton which describes the concept of commitment; in [9], the au-
thors adopts a variant of Event Calculus to commitment-based protocols, where
commitments evolve in relation to events and fluents and the semantics of mes-
sages is given in terms of predicates on such events and fluents (to describe how
messages affect commitments). In the last years, Singh et al. have applied the
concept of commitment-based protocols in the context of the Service Oriented
Architecture and Business Process Management, by addressing the problem of
business process adaptability [10] and of protocols composition [11]. The idea of
taking social semantics from the MAS world and applying it to the specification
of service choreographies has been adopted also in [12], although the focus is
more on the procedural aspects, rather than on the declarative ones.

Within the SOCS EU Project 3 we have developed a language, called SCIFF,
for specifying global interactions protocols in open agent societies, giving its
declarative semantics in terms of Abductive Logic Programming (ALP) [13].
Furthermore, we have equipped the SCIFF language with a corresponding proof
procedure, capable to verify at run-time (or a posteriori, by analizing a log
of the interaction) whether interacting agents behave in a conformant manner
w.r.t. the modeled interaction protocol. Protocols are specified only by consid-
ering the external observable behavior of interacting entities (i.e. the different
observable events which occurred during the interaction), and by the concept
of expectation about desired events and interactions; occurred events and pos-
itive/negative expectations are linked by means of forward rules called Social
Integrity Constraints.

We believe that the conjunct use of declarative approaches coming from the
Service Oriented Computing (SOC) and Multi Agent Systems (MAS) research
areas could be fruitfully exploited to specify and verify service choreographies. To
this aim, in this paper we show how DecSerFlow can be mapped to SCIFF in an
automatic and complete way, making the two proposals benefit from each other.
We motivate the importance of adopting a declarative approach for modeling
choreographies and show the feasibility of our approach by considering a simple
but interesting running example.

The paper is organized as follows: sections 2 and 3 respectively introduce
the running example and describe some issues which arise when modeling a
choreography. Section 4 briefly introduce the DecSerFlow language, showing how
the running example could be successfully modeled by using it; then, section 5
presents the SCIFF framework and how DecSerFlow can be expressed in terms
of SCIFF Integrity Constraints. Discussion and Conclusions follow.

2 A running example

Let us consider a choreography that envisages three different roles: a customer
which interacts with a seller to place an order of a set of items, and a warehouse
3 SOcieties of heterogeneous ComputeeS, IST-2001-32530 (home page

http://lia.deis.unibo.it/research/SOCS/).

29

which could participate to the interaction by communicating to the seller if it is
able (or not) to ship the ordered items.

Each execution of the choreography (a choreography instance) is identified by
the concept of order. The customer makes up an order by choosing one or more
items from the seller list. During the order building phase (i.e. before committing
an order), it is always possible to cancel the order; in this case, the user cannot
choose other items within the same instance anymore, and the choreography
terminates (a canceled order cannot be committed). After having committed an
order, the customer expects a positive or negative answer from the seller. In case
of a positive answer, a payment phase will be performed: the customer will pay
for the order and, finally, the seller will deliver a single corresponding receipt.

The seller could freely decide whether to confirm or refuse customer’s order,
but sometimes it has also to consider the opinion of the warehouse about the
shipment:

– the seller can confirm the order only if the warehouse has previously con-
firmed the shipment;

– if the warehouse states that it is unable to execute the shipment, then the
seller should refuse (or have refused) the order.

3 What is the focus of a choreography?

By looking at the choreography description of the previous section, we notice that
it is inherently declarative. It does not fix the control flow of the involved services,
nor how they should exchange messages in order to accomplish the choreographic
strategic goal. Rather, it focuses on a more abstract level, trying to capture the
essential of the interaction by adopting a global and open perspective, not driven
by implementation needs. This is the reason why we find, inside the description,
different kinds of constraints, as for example:

– time-ordered relationships among activities (“after having committed an
order, the customer expects a positive or negative answer”);

– cardinality constraints (“the seller will deliver a single corresponding re-
ceipt”);

– negative relationships, to express also what is forbidden during the choreog-
raphy execution (“the user cannot choose other items [. . .] anymore”)

– non-deterministic/opaque choices as well as non-oriented relationships among
activities (e.g., the seller can refuse independently from the warehouse an-
swer).

It is worth noting that negative information, as far as we are concerned, is not
addressed by current proposals: they adopt a procedural-oriented control flow
approach making the implicit assumption that all that is not explicitly mod-
eled is forbidden. As pointed out in [5], the impossibility of expressing negative
relationships forces the modeler to explicitly enumerate all the allowed possibil-
ities, introducing ambiguous decision points. This often leads to over-constrain
the model, forbidding possible executions which actually correctly realize the
intended choreography (see [14] for a discussion).

30

!"#$%&'(#'))'(*+(',%"#'

!%&&-$.

%(/'(

+!!'0$

%(/'(

!+1!').

('2"'#$

!%1$+!$

*+(',%"#'

('3"#'.

#,-0&'1$

!%1!(&.

#,-0&'1$

!+1!')
('2"'#$

('3"#'.

%(/'(

(a)

!"#$%&'(#'))'(*+(',%"#'

!%&&-$.

%(/'(

+!!'0$

%(/'(

('1"#'.

%(/'(

!%2$+!$

*+(',%"#'

('1"#'.

#,-0&'2$
!%2!(&.

#,-0&'2$

(b)

!"#$%&'(#'))'(*+(',%"#'

!%&&-$.

%(/'(

!%0!(&

%(/'(

('1"#'.

%(/'(

('1"#'.

#,-2&'0$
!%0!(&.

#,-2&'0$

(c)

Fig. 1. Three different possible realizations of the acceptance phase in BPMN.

3.1 Avoiding over-specifications

Avoiding over-specifications is a key issue when modeling choreographies. Instead
of strictly specify one of the possible behaviors which is able to respect the
choreography, the aim of the modeler should be the identification of the minimal
set of constraints that correctly regulate the interaction, achieving a trade-off
between the specification of what is forbidden/expected and what is allowed.

An interesting example which clearly shows such issue is the order accep-
tance phase described in Section 2. The aim of this phase is to identify when
a committed order should be accepted or rejected by the seller, taking into
account (in some cases) the warehouse too. At a choreographic level, the cou-
pling between seller and warehouse and between customer and warehouse is
reduced at a minimum. First of all, when and how the warehouse is contacted
is not specified; furthermore, there could be different choreography executions
in which the warehouse is not contacted at all. An execution in which the seller
autonomously decides to reject the order, without asking warehouse’s opinion, is
clearly accepted by the choreography; the case in which the warehouse refuses the
shipment without observing the commited order (because e.g. it is overloaded)
is implicitly envisaged too.

The over-specification problem arises if we try to model the acceptance phase
by using one of the current proposed languages for choreographies. Figure 1

31

!"#$%&'()"#*"+#%,)-

.,*(/!(%0/"1

+#%,)/(%&'()"#*"+#%,)-

.,*(/!(%0/"1

!"##$%&
("1!"#$%1(*
2*#/!(%0/"1

,#",*#0/*.
2*#/!(%0/"1

/10*#",*#%3/&/0-
2*#/!(%0/"1

'()*!+,-*./0+,1,2*3*-*(4

Fig. 2. A general framework for the specification and verification of choreographies

shows three different over-specified possible realizations of the acceptance phase
by adopting BPMN [15] collaborative models.

Diagram 1(a) shows a choreography where, after having received order’s com-
mitment, the seller contacts the warehouse in order to know if it can ship the
order or not. Then, if the seller evaluates that, due to a private policy, it is in
any case unable to confirm the order, it will send a message to the warehouse in
order to stop the processing of its decision; otherwise, the seller will confirm or
refuse the order by considering warehouse’s answer. In diagram 1(b), instead, we
find that the seller firstly evaluates its internal policies, and contacts the ware-
house only if the choreography prescribe to do so (i.e. only if it would accept the
order; in this case, receiving an answer from the warehouse is a mandatory re-
quirement). Finally, diagram 1(c) shows a different message flow from customer’s
side, and envisages a seller who does not apply any private choice, but simply
forwards what has been decided by the warehouse.

The three diagrams shows that approaching the choreography modeling task
by adopting a typical control+message flow perspective leads to pointlessly com-
plicate the model, loosing some acceptable interactions. We think that such a
perspective should be matter of a second phase, in which the choreographic
model is grounded on a set of service behavioral interfaces, to be developed from
scratch or selected from an already existing repository.

3.2 Towards a framework encompassing semantics and verification
capabilities

Besides being able to really capture the different concepts involved in a choreog-
raphy, possibly in a user-friendly way, a modeling language should be supported
by an underlying formal (possibly declarative) semantics, hence making possible
different kind of verifications. Figure 2 shows the schema of a general choreog-
raphy specification and verification framework.

The framework is mainly composed by three different parts: (i) a (graphical)
high-level modeling language, capable to specify choreographies; (ii) an under-
lying formal language, equipped with different verification capabilities; and (iii)
a mapping between the two specification languages, in order to automatically
obtain the formal description from the graphical one.

32

W.r.t. the verification issue, we cite three fundamental ones:

– properties verification, to ensure that a choreography meets some general
(such as livelock and deadlock freedom) or specific (i.e. domain dependent)
properties;

– conformance verification, to verify (at run-time or a posteriori, by analyzing
a message log) whether a set of services executing the choreography behaves
as prescribed by the model;

– interoperability verification [16], to check if a concrete service behavioral
interface is capable to play a given role within the choreography.

It is worth noting that such three verification issues are the same as the
ones introduced by Guerin and Pitt in the context of open MAS [17]: (i) verify
protocol properties, (ii) verify compliance by observation, and (iii) verify that
an agent will always comply.

We propose to ground the general framework shown in Figure 2 by adopt-
ing DecSerFlow as a graphical specification language, and to exploit SCIFF as
its underlying formalism. To demonstrate the feasibility of our approach, we
show how our running example could be successfully expressed in DecSerFlow,
and then provide the mapping of the different DecSerFlow concepts to SCIFF
Integrity Constraints. In [18] we already introduced the use of SCIFF for speci-
fying choreographies and performing the conformance verification task, leaving
out the high-level specification language and the corresponding mapping; this
work could be considered as a first step to fill this gap.

4 Choreography modeling in DecSerFlow

In [5], van der Aalst and Pesic propose DecSerFlow, a declarative language for
modeling service flows. Besides declarativeness, its advantages rely on its ap-
pealing graphical appearance, its extensibility and its formal semantics given by
means of Linear Temporal Logic (LTL).

As described in [5], modeling service specifications in DecSerFlow starts by
identifying the different involved activities (i.e. atomic logical unit of work),
and then to identify constraints on their execution, a lá policies/business rules.
Constraints are given as templates, i.e. as relationships between two (or more)
whatsoever activities: typically, the terms source and target activities indicate
activities linked by a relationship, where the execution of the source activity
“activates” the relation and impose some constraint on the target activity. The
meaning of each constraint template is expressed as an LTL formula, hence the
name “formulas” to indicate DecSerFlow relationships.

DecSerFlow core relationships are grouped into three families:

– existence formulas, unary relationships used to constrain the cardinality of
activities;

– relation formulas, which define (positive) relationships and dependencies be-
tween two (or more) activities;

33

source template
name

target description (from the example)

cancel
order

C1 negation
response

choose item in case of cancelation, the user cannot
choose other items [. . .] anymore

C2 responded
absence

commit order a canceled order cannot be commited

commit
order

C3 response refuse or confirm
order

after having committed an order, the cus-
tomer expects a positive or negative an-
swer from the seller

C4 precedence confirm shipment the seller could confirm the order only if
the warehouse has previously confirmed
the shipment

confirm
order

C5 response payment in the former situation [positive answer], a
payment phase will be performed

refuse
shipment

C6 responded
existence

refuse order if the warehouse [. . .] is unable to execute
the shipment, then the seller should refuse
(or have refused) the order

payment C7 response receipt delivery the customer will pay for the order and,
then, the seller should deliver a single cor-
responding receipt

receipt
delivery

C8 cardinality
0..1

the seller will deliver a single corresponding
receipt

Table 2. Mapping the statements of the running example to DecSerFlow constraints

– negation formulas, the negated version of relation formulas.

In order to present the DecSerFlow notation and how it could be effectively
used to model service choreographies, we show how our running example could
be expressed as a DecSerFlow diagram. In our example, we will use only a limited
number of DecSerFlow relations, such as responded existence (if A is performed,
then also B must be performed, either before or after A) and response (if A
is performed, then B must be performed after). For a complete description of
the DecSerFlow language and its underlying LTL formalization, the interested
reader is referred to [5].

4.1 Modeling the running example

Table 2 shows how the different statements of our running example could be
translated to DecSerFlow activities and constraints in an intuitive and straight-
forward way.

For example, to specify that only a single receipt should be delivered by the
seller, we may use the DecSerFlow absence(1) existence formula. The absence(N)
formula indeed states that the involved activity cannot be executed more than
N times, i.e. constrains its cardinality between 0 and N . A responded existence
relation is used to model the relationship between the refusal of shipment and
order: it states that if the shipment is refused by the warehouse, the refuse

34

order activity should be executed too, either before or after it. DecSerFlow’s
response relation imposes a forward temporal order on the responded existence
formula; for example, constraint C3 states that after having executed the order
commitment, then a positive or negative answer from the seller is expected to
be performed afterwards (when more target activities are involved, they are
considered in a disjunctive manner). Obviously, a precedence formula is provided
too, (e.g. C4).

DecSerFlow defines also more complex relationships, which are not part of
our running example. An example is the chain response formula, which allows
the user to model the typical strict sequence relationships of business processes:
it states that whenever the source happens, then the target should be performed
immediately after it.

For each positive relationships, DecSerFlow defines a corresponding negative
version. Basically, negative relations forbids the execution of the target activity
under certain conditions. E.g., the responded absence relationship (which is actu-
ally the negation of the responded existence one) states that if the source activity
is executed, then the target activity is forbidden. Such a negative relationship is
used e.g. to model the impossibility to commit an order if it is canceled by the
customer (constraint C2). It is worth noting that, as pointed out in [5], some
negative relations are equivalent; e.g., stating that B is responded absence of A
is equivalent to specify that A and B should not coexist in the same execution
instance.

4.2 Completing the DecSerFlow model

By deeply analyzing the running example, we could complete the DecSerFlow
diagram shown in Table 2 with other useful inferred constraints, in order to really
model all the intented concepts of the description; the result is shown in Table
3, while in Figure 3 the whole set of constraints is shown using the DecSerFlow
graphical notation (see also Tables 4 and 5 for the correspondence between the
DecSerFlow graphical symbols and their meaning).

C15 and C16 deal with the core concept of the choreography, which is actually
the commitment of one order. Since such an order could be canceled, we attach an
absence(1) constraint to the order commitment activity (to express that at most
one order can be committed), and bind the cancelation and the commitment with
a mutual substitution DecSerFlow relation, which states that at least one of the
two bounded activities has to be executed (i.e. an order should be committed or
canceled).

5 Mapping DecSerFlow to the SCIFF framework

The SCIFF [13] language was originally introduced for the specification of global
interaction protocols in open agent societies. As we have already pointed out, it
does not make any assumption about participants internals, but instead focuses

35

source type target description (from the example)
refuse
order

C9 precedence commit order An answer from the seller is valid only if it
is performed after order commitment

confirm
order

C10 precedence commit order

payment C5 precedence confirm order A valid payment should be preceded by the
confirmation of the order

deliver
receipt

C7 precedence payment The receipt should be delivered only if the
order has been paid

target type target description (from the example)
confirm
order

C11 not co-
existence

refuse order Possible answers are mutually exclusive

confirm
shipment

C12 not co-
existence

refuse shipment

commit
order

C13 precedence choose item an order is made up by at least one chosen
item

cancel
order

C14 precedence choose item

commit
order

C15 cardinality
0..1

the choreography centres around the con-
cept of a single order, which could possibly
be canceled

commit
order

C16 mutual
substitu-
tion

cancel order

Table 3. Inferred DecSerFlow constraints to complete the running example

on the observable and relevant events which occur within the society at run-
time. To let the user decides which are the relevant events inside the considered
domain, the SCIFF language completely abstracts from the problem of deciding
“what is an event”.

SCIFF adopts an explicit notion of time, and models the occurrence of an
event Ev at a certain time T as H(Ev, T), where Ev is a logic programming
term and T is an integer, representing the discrete time point at which the event
happened (the bold H stand for “Happened”). The set of all the events that
have happened during a protocol execution constitutes its interaction log.

Beside the explicit representation of what has already happened, SCIFF in-
troduces the concept of “what” is expected to happen, and “when”. The notion of
expectation plays a key role when defining interaction protocols, choreographies,
and more in general any dynamically evolving process: it is quite natural, in fact,
to think of such processes in terms of rules of the form “if A happened, then
B should be expected to happen, under certain conditions”. In agreement with
DecSerFlow, SCIFF pays particular attention to the openness of interaction:
interacting peers are not completely constrained, but they enjoy some freedom.
This means that the prohibition of a certain event should be explicitly expressed
in the model and this is the reason why SCIFF supports also the concept of neg-

36

!"#$%&'(#'))'(*+(',%"#'

!,%%#'-
.$'&

!%&&.$-
%(/'(

0112

!+3!')-
%(/'(

4+5&'3$

('6"#'-
%(/'(

!%3!(&-
%(/'(

('6"#'-
#,.4&'3$

!%3!(&-
#,.4&'3$

/').7'(-
('!'.4$

0112

!"

!# !$

!%

!&

!'

!(

!)

!*

!"+

!"" !"#

!"% !"$
!"&

!"'

Fig. 3. DecSerFlow model of the running example

ative expectations (i.e. of what is expected not to happen). Positive expectations
about events come with form E(Ev, T), where Ev and T could be variables, or
they could be grounded to a particular (partially specified) term or value respec-
tively. Constraints (a là Constraint Logic Programming), like T > 10, as well as
Prolog predicates can be specified over the variables; attaching the example con-
straint on the above expectation means that the expectation is about an event
to happen at a time greater than 10. Conversely, negative expectations about
events come with form EN(Ev, T); just to give an intuition, variables used inside
negative expectations are universally quantified: writing EN(Ev, T) ∧ T > 10
means that Ev is forbidden at any time which is greater than 10.

Social Integrity Constraints are forward rules used to link happened events
and expectations in order to define the declarative rules which regulate the course
of interaction, i.e. model the interaction protocol. They come as rules of the form
body → head, where body can contain (a conjunction of) happened events and
expectations, and head can contain (a disjunction of conjunctions of) positive
and negative expectations. For example, to model that “if a customer sends the
payment to the seller, then the seller should answer delivering the corresponding
receipt, within 24 hours” we could use the following Integrity Constraint:

H(pay(Customer,Seller, Item), Tp)

→E(deliver(Seller,Customer, receipt(Order, Id)), Td) ∧ Td > Tp ∧ Td < Tp + 24.

SCIFF accepts also a (Prolog) knowledge base, where the user can define
all the pieces of knowledge which are independent from the interaction. De-
fined predicates could be used inside Integrity Constraints, reconciling forward,
abductive reasoning with backward, goal-oriented reasoning. Finally, note that
interaction is considered to be goal oriented: the same interaction protocol could
be seamlessly used for achieving different goals, which can be expressed by means
of Prolog predicates and expectations.

37

The SCIFF semantics is based on Abductive Logic Programming: an interac-
tion specification (i.e. the set of rules regulating the allowed possible interactions)
is mapped to an Abductive Logic Program, where Integrity Constraints define
the interaction protocols, and positive/negative expectations are considered as
abducibles. The operational counterpart of the language, namely the SCIFF
proof procedure, is indeed able to verify conformance of a set of interacting en-
tities w.r.t. the considered protocol by hypothesizing positive (resp. negative)
expectations and checking whether a matching happened event actually exists
(resp. does not exist). For a detailed description of the SCIFF language, as well
as its declarative semantics and the corresponding proof procedure, the inter-
ested reader is referred to [13].

5.1 Expressing DecSerFlow concepts as Integrity Constraints

Let us now consider again our running example, in order to explain how the
different DecSerFlow concepts could be mapped to SCIFF Integrity Constraints.

Roughly speaking, each DecSerFlow constraint is mapped to a set of SCIFF
Integrity Constraints. The body of the Integrity Constraint which maps a rela-
tion or negation formula is constituted by the happened event which corresponds
to the formula’s source (each DecSerFlow relation is triggered when its source
activity is performed). Depending on the nature of the relation, the head is
instead is determined by (a disjunction of) positive or negative expectations.

For example, to specify that a generic activity A is subject to an absence(N)
cardinality constraint, SCIFF uses an Integrity Constraint which states that
if N different executions of A are performed, then the N + 1-th is forbidden.
Since SCIFF adopts an explicit notion of time, differences between executions
are modeled as differences between the involved execution times; hence, the
absence(N) on activity A can be specified as follows4:

N̂

i=1

“
H(A, Ti) ∧ Ti > Ti−1

”
→ EN(A,T) ∧ T > TN .

Furthermore, thanks to the explicit notion of time, another interesting feature
of the mapping is that the “response” and “precedence” version of each formula
are formalized in the same way, but by imposing opposite constraints on the
involved times. Table 4 explicitly points out such similarities by showing how
the responded existence, response and precedence constraints, as well as their
negated version, can be mapped to SCIFF.

Some DecSerFlow formulas are translated to SCIFF in a slight different way.
In particular, their mapping do not have a triggering part but simply generates a
set of expectations (see Table 5). Therefore, they define, in some sense, the initial
goal of the choreography, since the corresponding expectations are generated
independently from the interaction.

Table 6 represents the complete mapping of the DecSerFlow model shown
in Figure 3. For the sake of simplicity, we have left out the information about
4 We suppose that T0 = 0 and that at a given time only one activity can happen.

38

DecSerFlow formula Meaning SCIFF Integrity Constraint

! "
if A is executed, then B
should be executed too

H(A,TA) → E(B,TB)

! "
if A is executed, then B can-
not be executed

H(A,TA) → EN(B,TB)

! "
if A is executed, then B
should be executed after it

H(A,TA) → E(B,TB) ∧TB > TA

! "
if A is executed, then B can-
not be executed after it

H(A,TA) → EN(B,TB) ∧TB > TA

! "
if A is executed, then B
should be executed before it

H(A,TA) → E(B,TB) ∧TB < TA

! "
if A is executed, then B can-
not be executed before it

H(A,TA) → EN(B,TB) ∧TB < TA

Table 4. Mapping of the simple DecSerFlow relation and negation formulas in SCIFF

DecSerFlow formula Meaning SCIFF Integrity Constraint

!

"

A is forbidden → EN(A, TA)

!

"##$ A has to be executed at least
N times

→
VN

i=1

“
E(A, Ti) ∧ Ti > Ti−1

! " A or B should be executed → E(A, TA) ∨ E(B, TA)

Table 5. Mapping of “goal-oriented” DecSerFlow formulas

activities originators (i.e. about the role responsible for an activity); such an
information could be seamlessly added to the SCIFF formalization, but it is not
envisaged in the current version of DecSerFlow.

As already pointed out, DecSerFlow defines other constraints, missing in our
running example. Anyway, they are mapped to SCIFF Integrity Constraints
too (see [19] for a complete description of such a mapping). For example, the
following rule maps the chain response between A and B:

H(A, TA) →E(B, TB) ∧ TB > TA ∧ EN(X, TX) ∧ TX > TA ∧ TX < TB.

The translation tries to intuitively capture the notion of next state, which is
directly expressed in LTL as a temporal modality (by using the operator ◦). It
relies on the fact that if B should belong to the next state of A, then between
the two execution times no other activity should be performed. For a description
of the complete translation of core DecSerFlow concepts to SCIFF, see [19].

6 Discussion and Conclusions

In this work we have proposed a conjunct use of declarative approaches coming
from the SOC and MAS research areas, to the aim of specifying and verifying
service choreographies.

39

C1 H(cancel order, Tc) → EN(choose item, Ti) ∧ Ti > Tc.

C2 H(cancel order, Tc) → EN(commit order, To).

H(commit order, To) → EN(cancel order, Tc).

C3 H(commit order, To) → E(confirm order, Tc) ∧ Tc > To

∨ E(refuse order, Tr) ∧ Tr > To.

C4 H(confirm order, To) → E(confirm shipment, Ts) ∧ Ts < To.

C5 H(confirm order, Tc) → E(payment,Tp) ∧ Tp > Tc.

H(payment,Tp) → E(confirm order, Tc) ∧ Tc < Tp.

C6 H(refuse shipment, Ts) → E(refuse order, To).

C7 H(payment,Tp) → E(deliver receipt, Td) ∧ Td > Tp.

H(deliver receipt, Td) → E(payment,Tp) ∧ Tp < Td.

C8 H(deliver receipt, Td1) → EN(deliver receipt, Td2) ∧ Td2 > Td1.

C9 H(refuse order, Tr) → E(commit order, To) ∧ To < Tr.

C10 H(confirm order, Tc) → E(commit order, To) ∧ To < Tc.

C11 H(refuse order, Tr) → EN(confirm order, Tc).

H(confirm order, Tc) → EN(refuse order, Tr).

C12 H(refuse shipment, Tr) → EN(confirm shipment, Tc).

H(confirm shipment, Tc) → EN(refuse shipment, Tr).

C13 H(commit order, Tc) → E(choose item, Ti) ∧ Ti < Tc.

C14 H(cancel order, Tc) → E(choose item, Ti) ∧ Ti < Tc.

C15 H(commit order, Tc1) → EN(commit order, Tc2) ∧ Tc2 > Tc1.

C16 → E(commit order, To)

∨ E(cancel order, Tc).

Table 6. Mapping of the DecSerFlow running example to SCIFF

In particular, we have chosen DecSerFlow as the modeling language and
SCIFF as its underlying formalization. To make DecSerFlow benefit of SCIFF
in an automatic way, we have shown how the different DecSerFlow concepts
can be mapped to SCIFF Integrity Constraints and applied our methodology
on a running example. The advantage of such a translation is twofold: on one
hand, it is possible to specify SCIFF rules by using an intuitive, extensible and
user-friendly graphical language; on the other hand, a DecSerFlow model may
be grounded not only on LTL but also on the SCIFF abductive framework,
acquiring some new advantages and features, such as:

40

– Expressivity of the language. The SCIFF language is capable to model rich
constraints and conditions on data and execution times involved in the in-
teraction; we are currently studying how DecSerFlow could be extended to
graphically represent such constraints.

– Verification capabilities of the SCIFF framework. As described in [13, 18],
by translating DecSerFlow to a SCIFF specification we could automatically
use it to perform the conformance verification task. Furthermore, SCIFF
has been extended to deal also with the verification of properties [20] and
interoperability [21]; we intend to study how such extended proofs could be
applied to DecSerFlow models, aiming at covering all the building parts of
the general framework schema shown in figure 2.

– Possibility to mine DecSerFlow models from execution traces. Since SCIFF
belongs to the logic programming setting, it is possible to apply all the rea-
soning techniques developed inside such a setting on it. In particular, in
[22] we have shown how an Inductive Logic Programming algorithm can be
adapted to mine SCIFF rules from event logs; thanks to the one-to-one map-
ping of DecSerFlow concepts to SCIFF, it is then possible to automatically
obtain a corresponding DecSerFlow description of the mined model.

Finally, as future work we envisage a deep comparison between SCIFF and
LTL, to better understand their strength, weaknesses and relationships and to
exploit the possibility to have two different mappings of DecSerFlow.

References

1. Barros, A., Dumas, M., Oaks, P.: A critical overview of the web services choreog-
raphy description language (WS-CDL). BPTrends (2005)

2. van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., Russell, N., Verbeek,
H.M.W., Wohed, P.: Life after BPEL? In Bravetti, M., Kloul, L., Zavattaro,
G., eds.: International Workshop on Web Services and Formal Methods, WS-FM
2005, Versailles, France, September 1-3, 2005, Proceedings. Volume 3670 of Lecture
Notes in Computer Science., Springer (2005) 35–50

3. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
Process Execution Language for Web Services version 1.1. (2003)

4. W3C: Web services choreography description language version 1.0
5. der Aalst, W.M.P.V., Pesic, M.: DecSerFlow: Towards a truly declarative service

flow language. In: WS-FM’06. Volume 4184 of LNCS., Springer (2006)
6. Baldoni, M., Baroglio, C., Martelli, A., Patti, V., Schifanella, C.: Verifying the con-

formance of web services to global interaction protocols: A first step. In Bravetti,
M., Kloul, L., Zavattaro, G., eds.: International Workshop on Web Services and
Formal Methods, WS-FM 2005, Versailles, France, September 1-3, 2005, Proceed-
ings. Volume 3670 of Lecture Notes in Computer Science., Springer (2005) 257–271

7. Bauer, B., M’́uller, J.P., Odell, J.: Agent uml: a formalism for specifying multiagent
software systems. In: First international workshop, AOSE 2000 on Agent-oriented
software engineering, Springer-Verlag (2001) 91–103

8. Fornara, N., Colombetti, M.: Operational specification of a commitment-based
agent communication language, Bologna, Italy (July 15–19 2002) 535–542

41

9. Yolum, P., Singh, M.: Flexible protocol specification and execution: applying event
calculus planning using commitments. 527–534

10. Desai, N., Chopra, A.K., Singh, M.P.: Business process adaptations via protocols.
In: 2006 IEEE International Conference on Services Computing (SCC 2006), 18-22
September 2006, Chicago, Illinois, USA, IEEE Computer Society (2006) 103–110

11. Mallya, A.U., Desai, N., Chopra, A.K., Singh, M.P.: Owl-p: Owl for protocol
and processes. In Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M.P.,
Wooldridge, M., eds.: 4rd International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2005), July 25-29, 2005, Utrecht, The Nether-
lands, ACM (2005) 139–140

12. Walton, C.: Protocols for web service invocation. Proceedings of the AAAI Fall
Symposium on Agents and the Semantic Web (ASW05), Arlington, Virginia, USA.
(November 2005)

13. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Ver-
ifiable agent interaction in abductive logic programming: the SCIFF framework.
TOCL (2007) Accepted for publication.

14. Chopra, A.K., Singh, M.P.: Producing compliant interactions: Conformance, cov-
erage, and interoperability. In Baldoni, M., Endriss, U., eds.: DALT. Volume 4327
of Lecture Notes in Computer Science., Springer (2006) 1–15

15. White, S.A.: Business process modeling notation specification. Technical report,
OMG (2006)

16. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: A priori conformance verifica-
tion for guaranteeing interoperability in open environments. In: Service-Oriented
Computing - ICSOC 2006, 4th International Conference, Chicago, IL, USA, Decem-
ber 4-7, 2006, Proceedings. Volume 4294 of Lecture Notes in Computer Science.,
Springer (2006) 339–351

17. Guerin, F., Pitt, J.: Proving properties of open agent systems, Bologna, Italy
(July 15–19 2002) 557–558

18. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Montali, M., Storari,
S., Torroni, P.: Computational logic for run-time verification of web services chore-
ographies: Exploiting the socs-si tool. In Bravetti, M., Núñez, M., Zavattaro, G.,
eds.: Web Services and Formal Methods, Third International Workshop, WS-FM
2006 Vienna, Austria, September 8-9, 2006, Proceedings. Volume 4184 of Lecture
Notes in Computer Science., Springer (2006) 58–72

19. Chesani, F., Mello, P., Montali, M., Storari, S.: Towards a decserflow declara-
tive semantics based on computational logic. Technical Report DEIS-LIA-07-002,
DEIS, Bologna, Italy (2007)

20. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Se-
curity protocols verification in Abductive Logic Programming: a case study. In
Dikenelli, O., Gleizes, M.P., Ricci, A., eds.: Proceedings of ESAW’05, Kuşadasi,
Aydin, Turkey, October 26-28, 2005. Volume 3963. (2006) 106–124

21. Alberti, M., Gavanelli, M., Lamma, E., Chesani, F., Mello, P., Montali, M.: An
abductive framework for a-priori verification of web services. In Bossi, A., Maher,
M.J., eds.: Proceedings of the 8th International ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming, July 10-12, 2006, Venice,
Italy, ACM (2006) 39–50

22. Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing declarative
logic-based models from labeled traces. In: Proceedings of the 5th International
Conference on Business Process Management (BPM 2007), LNCS (2007) To appear

42

Mapping BPMN to Agents: An Analysis

Holger Endert, Tobias Küster,
Benjamin Hirsch, and Sahin Albayrak

DAI-Labor, Technische Universität Berlin
Faculty of Electrical Engineering

and Computer Science
{holger.endert|tobias.kuester|

benjamin.hirsch|sahin.albayrak}@dai-labor.de

Abstract. In industry the development of software applications is usu-
ally a complex and demanding task, and the design and the technical
realisation is often spread among different roles, which leads to a time
consuming and error-prone exchange of knowledge. In order to ensure
the correct translation from business idea to implementation it is crucial
to allow for the correct and complete exchange of information between
these roles.
In this paper, we describe an automated mapping from business pro-
cess diagrams to agent concepts that simplify the transfer of knowledge
between the roles involved in the software development process. Our ap-
proach benefits from building upon an intuitive visual specification lan-
guage on the one hand, and from using a powerful and flexible execution
platform on the other.

1 Motivation

Multi-agent systems (MAS) arguably provide an answer to the creation of com-
plex distributed applications which are manageable and adapt to the state of
the environment. However, even though agent research has been ongoing for
more than a decade now, it still is a mainly academic subject. The rapid uptake
of technologies such as web-services, which aim squarely at the same problem
space as multi-agent systems [9], however suggests that a corresponding demand
is existent in industry. We believe that one important reason for the slow adop-
tion of agents in industry is the disconnect that exists between business- and
multi-agent oriented software development.

It appears that while introducing mentalistic notions to model agents is a
very intuitive approach, business users tend to think in terms of processes, and
business entities – and they are the ones that make overall design decisions!
Therefore, we approach the issue of designing multi-agent frameworks from the
vantage point of the business user, and provide a mapping from the Business
Process Modeling Notation (BPMN [12]), a graphical language used to represent
business processes, to agent concepts.

Choosing the BPMN as the source language for our mapping, and thus as
the language for designing distributed business applications, our approach can

43

offer certain advantages, such as providing a simple and intuitive graphical nota-
tion. Although its basic concepts are simple, further specification options make
the language sufficiently expressive. The BPMN is also suitable for defining pro-
cesses of different levels of abstraction. As the focus lies on the process model of
an application, an extension will be required in order to integrate the support
for structured data types. It seems reasonable to rely on existing specification
languages for that purpose. Since the BPMN has emerged from a standardis-
ation effort for business processes by the OMG, it will most likely play a role
in software specification in the near future, which additionally encourages our
approach.

Using multi-agent systems as target model provides the capabilities of a
powerful execution environment and an intuitive abstraction model. For instance,
having an explicit representation of a process participant, i.e. an agent, makes the
application more accurate w.r.t. its structure. In contrast to that, a mapping to
BPEL (e.g. as presented in [12] or [19]) would discard this structural information
completely. MAS offer some further properties, for instance their intuitive design
through mentalistic notions, scalability and flexibility, which help to deploy the
resulting applications. Because of the variety of existing multi-agent frameworks,
we have to define the requirements for the target model as generically as possible.
Therefore we decided to map into BDI-type MAS, because these seem to be most
suitable to capture the process model of a business process diagram.

To summarise, our main contribution of this paper is to provide one step
towards the connection of business process design and the design of multi-agent
systems by means of an automated mapping. Our focus lies on the identification
of BDI-related concepts that can represent specific elements of the BPMN, rather
than specifying all details of the control flow, which is already covered by several
other authors (see for example [13] or [19]). The key feature of this approach
is to facilitate the correct and fast transformation of the original concepts into
code that can be used directly or with adaptations within the resulting business
application.

The rest of this paper is structured as follows. In Section 2 and 3 we will
provide a short introduction to BPMN and agents and state a formal description
for both. In Section 4 we will describe the actual mapping from BPMN to agents.
Then we will present related work in Section 5, and finally we will conclude and
give rise to future work in Section 6.

2 BPMN

The Business Process Modeling Notation (BPMN), which is maintained by the
Object Management Group, is a graphical notation for describing various kinds
of processes. The main notational elements in BPMN are FlowObjects, that are
contained in Pools and connected via Sequence- and MessageFlows. They sub-
divide in Events, atomic and composite Activities and Gateways for forking and
joining. SequenceFlows describe the sequence in which the several FlowObjects
have to be completed, while MessageFlows describe the exchange of messages

44

Fig. 1. BPMN example diagram.

between Pools. Thus, BPMN combines the definition of local workflows and the
interaction between them.

An example diagram is shown in Figure 1. As can be seen, the meaning of
the diagram can be understood intuitively and without any specific knowledge
about the semantics of BPMN. This strength is at the same time a weakness in
that BPMN is more of a graphical notation than a formal one, which is required
for automatic interpretation. Although the specification includes some semantics
and even defines a mapping to WS-BPEL [12, Chapter 11], much of the semantics
is especially tailored for this mapping and the focus of the specification is clearly
the visual representation.

2.1 Graph-Based BPMN Representation

For the purpose of our mapping, we can simplify the BPMN by discarding all
layout information. What is left is a graph-like structure with several types of
vertices and edges that should satisfy certain properties in order to be a correct
business process diagram (BPD). Therefore, it is straightforward to define a BPD
in terms of a graph and graph properties1. This representation has the additional
advantage of allowing further analyses that help to implement correct diagrams.
In general, a BPD is defined as the following graph structure:

Definition 1. (BPD-Graph) - Let BPD = (O,F, src, tar) be a graph with

– O — the set of nodes (objects) in the BPD-Graph.
– F — the set of edges (message and sequence flows) in the BPD-Graph.
– src, tar : F → O two functions, which identify the source and target objects

of each edge.
1 More specifically, typed attributed graphs are required in order to capture the at-

tributes of the nodes that are necessary for the mapping.

45

In order to distinguish the different nodes and edges in a BPD-Graph, some
additional notations are required. Therefore, let O be partitioned into the disjoint
subsets OE , OA, OG, OP , where

– OE — the set of event-nodes, which can be further partitioned into the
disjoint subsets OE

S , OE
E , OE

I , i.e. start-, end- and intermediate events.
– OA — the set of activity-nodes, which can be further partitioned into the

disjoint subsets OA
At, O

A
Sub, i.e. the atomic activity nodes and the subprocess

nodes.
– OG — the set of gateway-nodes, which can be further partitioned into the dis-

joint subsets OG
S and OG

M , i.e. the splitting and the merging gateway nodes.
These can again be partitioned into the subsets for exclusive (XOR), inclusive
(OR) and parallel (AND) split and merge gateways (OG

S,X , OG
S,O, OG

S,A, OG
M,X ,

OG
M,O and OG

M,A).
– OP — the set of pool-nodes.

Elements of the BPD have attributes, which are also relevant for the mapping,
because they contain the data and the parameters used within the process. In
slight abuse of notion, we refer to attributes of an element by using the common
dot-syntax. For example, if p is a pool, the term p.name refers the name-attribute
of this element.

Note that not every BPD graph, as presented here, refers to a valid diagram
according to the specification. Hence, a BPD is said to be correct if it satisfies
a set of additional properties. Actually, these properties claim even more than
correctness, namely that the diagram is normalised, i.e. it conforms to a canonical
representation. BPDs can be normalised through a graph transformation, such
that our approach is not generally limited to a subset of diagrams. Normalised
BPDs simplify the mapping because there are less cases to consider. Both the
normalisation and correctness is analysed in [10], and hence not part of this
paper.

In the next section, we will present a formal description of the agent concepts,
which we are going to use in the mapping.

3 Agents

Throughout the literature, there is no single and universally accepted definition
of the term agent (for a number of possible definitions see e.g. [11]). Nevertheless,
certain properties are required in order to translate a complete BPD graph. In
our opinion, agents that follow the BDI paradigm [6] are best suited to capture
all the functionality that is expressed with BPMN. Hence, we propose to use
agents that are capable of performing BDI-related reasoning on goals, plans,
intentions and beliefs. Subsequently, we define an agent as a tuple containing
plans, goals, intentions, beliefs and an identifier:

Definition 2. (Agent) - An agent is a tuple Λ = (id, Π, Γ , I, Θ) with

– id — A unique string that allows to identify an agent.

46

– Π — A set of plans,that the agents knows.
– Γ — A set of goals an agent is trying to achieve.
– I — A set of intentions (i.e. selected plans).
– Θ — A set of beliefs an agent knows.

Plans define an agents possible behaviour. A plan may be selected for execu-
tion by the agent, which results in an intention. Goals refer to usual achievement
goals, and lead to new intentions in order to fulfil them. Beliefs is the set of facts
that an agent assumes to be true. These building-blocks are subsequently spec-
ified in more depth.

3.1 Plans

Plans define the actions of an agent that may be carried out in order to achieve
a certain goal. A plan must have a defined signature and an executable (or
interpretable) script that is capable of performing BDI-related operations, such
as manipulating the beliefs or goals of an agent. Additionally, it must allow
to organise these elements using control flow, e.g. for conditional or parallel
branching. Often plans consist also of preconditions and effects, but since we do
not require them in this work, we omitted them for simplicity reasons.

Definition 3. (Plan) - A plan is a tuple π = (Name, In, Out, X), where the
elements are defined as follows:

– Name — The name that identifies the plan.
– In — The list of input variables of the plan.
– Out — The list of output variables of the plan.
– X — The script of the plan, which is a sequence of control flow elements

together with operations for manipulating the agents state.

Variables occurring in the In- and Out-lists are defined as tuples, containing
a name and a type ϑ := (Name, Type). The script X must support at least the
following operations:

– invoke(name) — Invokes a plan for execution.
– addGoal(γ) — Adds a goal to the goal-base.
– send(µ) — Sends a message µ.
– receive(µ) — Receives a message µ.

3.2 Goals

A goal in this work corresponds to a usual achievement goal, and is related to a
plan. This relation is defined via the plans and the goals signatures. Both must
fit to each other by having the same name, and the In- and Out-lists must match
to each other w.r.t. the sizes and types of the elements.

Definition 4. (Goal) - A goal is a tuple γ = (Name, In, Out), where the name
is an identifier, and In and Out are lists of data-elements.

Note, that the in- and output elements are not restricted to variables here,
but can contain any data elements.

47

3.3 Data and Beliefs

Data can be any (evaluated) expression and may be bound to a variable. A belief
(fact) is data, which is located in the belief-base of an agent, and is referable via
the name.

Definition 5. (Fact) - A fact is a tuple θ = (Name, Value, Type). The Name
is a unique identifier, the Value represents the content of the fact, and the Type
belongs to a formal definition of a domain, e.g. to an ontology.

As can be seen, adding a variable to the belief-base results in a fact.

3.4 Messages

The exchange of messages is one major aspect of business processes. For the pur-
pose of the mapping, we have to deal with messages in multiple cases (send-tasks,
events, etc.). We therefore summarize our minimum requirements on messages
here.

Definition 6. (Message) - A message is a tuple µ = (Name, Sender, Receiver,
Content), with:

– Name — The id of the message.
– Sender — The unique id of the sender (agent).
– Receiver — The unique id of the receiver (agent).
– Content — A list of data.

Although agents (and multi-agent systems) often contain many more aspects,
no further elements are necessary for the mapping we will describe in the next
section.

4 Mapping

The mapping we present is similar to that defined in the BPMN specification,
which uses WS-BPEL [8] as target model. Since we use agents instead, the
results will have several (desired) differences and advantages. For instance, agent
frameworks that conform to the FIPA agent platform specification [1] provide
infrastructure services that enable agents to find and cooperate with each other
in a flexible manner. Thus, an application is easier to use and distribute among
execution platforms. Another interesting point is, that agents can be modelled
in terms of mental attributes, such as goals, beliefs and intentions, and hence
their implementation can be quite intuitive and on a higher level of abstraction.

The approach we take is the definition of a graph transformation system,
which is specified by a set of transformation rules, that map elements of the
source model (BPMN) to elements of the target model (agents). The mapping is
separated into a set of different tasks which have to be completed in a specific or-
der. First of all, for any BPD, we apply a normalization process, that translates a

48

given graph into its canonical representation. Thereafter we check for syntactical
inconsistencies by evaluating graph properties. Then we analyze the semantics
of the BPD using an approach based on petri nets, as presented in [10]. Finally,
if everything went well so far, the mapping itself is executed. In this work, we
only deal with the final part, the mapping, focusing on the most relevant BPMN
elements and their counterparts in the agents model (Subsection 4.1). There, all
rules are in the form

LHS =⇒ RHS,

where LHS (left-hand side) is a pattern that is searched in the source graph, and
RHS (right-hand side) contains the elements that are added to the target model.
The rules are not fully specified in that they do not provide NACs (negative
application conditions) or a reference model. The former is in most cases used
to ensure that each element is mapped only once. The latter stores the progress
of the mapping and may contain additional temporary elements, that simplify
the mapping.

4.1 Mapping of Nodes

We initially start with providing the mapping-rules for nodes in a top to bottom
manner. The most top-level nodes of a BPD are pools, representing the partic-
ipants within a diagram. These are mapped directly to agents by applying this
rule:

Rule 1 (Pools) - Let p ∈ OP be a pool of a given BPD.

p =⇒ Λ := (p.name, ∅, ∅, ∅, ∅)

So far, an agent does not possess any specific knowledge in terms of plans,
goals, intentions or beliefs. These elements are added by the application of sub-
sequent rules. For each pool, there exists exactly one process that is translated
into a plan and added to the agents plan-library.

Rule 2 (Process) - Let p be a pool, and Λ be the agent, that was created from
p. Let further be x the process of p, i.e. p.process = x.

x =⇒ π := (x.name, [] , [] , [])
ΠΛ := ΠΛ ∪ {π}

The plan is given with a name, an empty in- and output-list, and an empty
script, which has to be filled during the mapping of its control flow. The in-
and output-lists depend on the start- and end-events of the process. If these are
message-events, the message-properties are used to create the parameters and
the results as follows:

49

Rule 3 (Start-Event) - Let e ∈ OE
S be a start-event with e.trigger = Message.

Let further π be the plan, that was created from the process, in which e is located.

∀p ∈ e.message.properties =⇒ ϑ := (p.name, p.type)
Inπ := append(Inπ, ϑ)

Rule 4 (End-Event) - Let e ∈ OE
E be an end-event with e.result = Message.

Let further π be the plan, that was created from the process, in which e is located.

∀p ∈ e.message.properties =⇒ ϑ := (p.name, p.type)
Outπ := append(Outπ, ϑ)

Start events of the type Timer and Rule may also be used in another context.
Both should result in reactive behaviour, where the former requires that agents
are aware of time, and the latter that they can monitor their beliefs w.r.t. certain
conditions. Other end event-types refer to control flow, such as the termination
or failure of a process, and are not detailed here.

Sub-processes are used to create hierarchical and reusable structures within
a BPD. Either they refer to completely independent processes (independent sub-
process), which may be defined outside the given BPD, or they can be included
into a parent process (embedded sub-process). The independent sub-process is
mapped onto a goal, revealing one major strength of multi-agent systems. In
this case, the corresponding plan can be provided by any agent, if the target
platform supports Yellow Pages Services. The embedded sub-processes is mapped
onto a plan, because it contains an own workflow. Additionally an operation for
invoking that plan is created. Note, that the invoke- and addGoal -operations
have to be added into the correct place within the script. This is done during
the control flow mapping, and hence they are not added into any script by the
given rules:

Rule 5 (Embedded Sub-Process Activity) - Let x ∈ OA
Sub be an activity, with

x.subProcessType = Embedded. Let further be Λ the agent, that was created
from the pool, in which x is located.

x =⇒ π := (x.name, [] , [] , [])
ΠΛ := ΠΛ ∪ {π};
invoke(x.name)

Rule 6 (Independent Sub-Process Activity) - Let x ∈ OA
Sub be an activity, with

x.subProcessType = Independent.

x =⇒ γ := (x.processRef.name, [] , [])
addGoal(γ)

∀i ∈ x.inputPropertyMaps =⇒ Inγ := append(Inγ , eval(i))
∀o ∈ x.outputPropertyMaps =⇒ Outγ := append(Outγ , eval(o))

50

Note that the elements of the property-maps, which are used to pass the data
to the goal in Rule 6, are string expressions. Hence we cannot be more specific
than interpreting the string, which is done using the eval function. Therefore it
must conform to the syntax that is used to refer to a data-element in the script
language of the target platform.

Communication in BPMN is specified by using send or receive tasks. These
are simply mapped onto asynchronous speechacts. The rule for the send task is
given exemplarily. The corresponding rule for the receive task is defined analo-
gously. Only the taskType and the created operation is different.

Rule 7 (Send-Task) - Let x ∈ OA
At be an activity with x.taskType = Send. Let

further be µ the message, that should be sent (and is mapped from the message-
attribute of x).

x =⇒ send(µ)

We note, that there are some nodes left that are not covered so far. We
will not provide rules for each of them here, but discuss their mapping briefly.
First of all, a very helpful BPMN node is the script-task, which may contain
arbitrary code in its script-attribute. With this, it is easy to define functionality,
that cannot be expressed otherwise. The mapping of reference nodes (task or
sub-process of type reference) depends on the nodes they refer to. Some other
elements are not supported yet, for instance the mapping of transactions, which
is also an open issue in the mapping to WS-BPEL.

The next subsection describes, how these elements interact with each other
by means of modifying and passing data.

4.2 Mapping of Data Flow

BPMN is not intended to model data [12, p. 34], and thus has to rely on other
sources. Additionally, since the main purpose of BPMN is the visualisation of the
work flow, data handling is not very comfortable. In most cases, it is completely
hidden, and can only be specified within non-visible attributes of the nodes.

Data flow is addressed by assigning values to properties that can be attributed
to every activity (task or sub-process) in a BPD. Since each relevant aspect of
a property (i.e. its type, name or value) has to be given as string, the designer
is free to choose any representation, and can simply adopt the specific language
of the target model. The general approach for mapping the data handling of
activities is given in Figure 2. In addition to the operation (which may be for
instance an invoke), its local variables have to be created (as facts), and values
have to be assigned to them. Assignments after the execution of the operation
can be used to bind the results to globally accessible facts again for further
processing. Since we utilise the belief-base of an agent for storing and accessing
data, which in contrast to properties of activities is always globally accessible,
the cleanup section removes them from the belief-base afterwards.

Some specific elements also possess messages (send- and receive tasks, events
of type message), which also provide properties for capturing data. Messages are

51

[define facts]
[assignments]
<operation>
[assignments]
[cleanup facts]

Fig. 2. General data handling for activities

mapped onto their counterparts in the agent model, and in the case of the tasks
are inserted before the speechact operation into the script, which passes them
as parameter (see Rule 7). The assignments again assure that sent and received
data is bound to the corresponding facts/variables.

The most specific mapping of data handling is given for goals, that result
from independent sub-processes (see Rule 6). There, data is passed using the
attributes input- and outputPropertyMap, which are sets of expressions. These
map the properties between the two processes, and are used for this purpose in
the agents model as well. Note, that the expressions are again represented as
ordinary strings, and hence have to be encoded in the target language already.

The next subsection presents some issues concerning the mapping of the
control flow.

4.3 Mapping of Control Flow

The mapping of control flow will be applied after the several BPMN elements
have been mapped to equivalent elements of the agent description language. The
purpose of the mapping of control flow is to arrange this collection of atomic ele-
ments into structures such as sequences, if-else blocks or loops. These structures
then make up a plan’s script. The mapping is quite intuitive to understand and
at the same time complicated to realize and highly dependent on the targeted
agent language’s capabilities.

Basically, the flow objects contained in one pool will map to one plan. Se-
quence flows determine the order of execution. Gateways define the extend of
structured elements, such as conditional blocks, parallel blocks or loops, depend-
ing on the gateway’s type (AND, XOR, . . .) and the number of incoming and
outgoing sequence flows. In the case of BPMN also event handlers (intermediate
events on an activity’s boundary) have to be taken into account, which can com-
plicate the resulting structured workflow by some amount, making it necessary
to skip parts of the workflow in case an event handler is triggered.

Well-structured workflows can be mapped in quite a simple rule-based bottom-
up approach. A set of rules is used to identify the few basic structures that make
up a complex workflow – sequences, blocks, loops, etc. – and combine the target
elements that have been mapped from the involved source elements to structures
accordingly. After that, either the source model itself or a reference model, con-
necting the source model with the target model, has to be reduced by replacing

52

the successfully mapped structure with an atomic marker-node, referencing the
new structure in the target model, so that a rule can not be applied twice for
the same element. This process is repeated until the model can not be reduced
any further.

However, in some cases, when the BPMN workflow is not well-structured, it is
hard to map the control flow that is defined within BPMN to any kind of script,
because the languages have a different power of expressiveness. Usually, graph-
like languages such as BPMN allow to specify control flow, which is generally
not reproduceable in block-oriented languages.

Some examples of such are workflows containing an AND-split gateway being
followed by a OR-join gateway, resulting in a lack of synchronization and multiple
instances of the workflow after the joining gateway, which can not be expressed
easily in block-structured languages. Other examples are all kinds of overlapping
blocks and loops and interconnected parallel workflows.

Some of these problems can be tackled by duplicating parts of the workflows,
by spawning child-processes or by introducing auxiliary variables. Obviously, it
is highly favorable if this is done programmatically and the user does not have
to consider these workarounds.

These problems have been discussed in a number of papers and will not be
reconsidered here. For further information, please refer to [13, 15, 19, 21].

4.4 Mapping-Example

In this section we will illustrate the mapping using the simple business process
diagram introduced in Figure 1. In the course of this example we will use the
identifiers found on each of the diagram nodes to refer to the nodes.

Besides the visual nodes the BPD also needs some non-visual attributes, such
as properties and assignments, which will be given in Table 1. In the following we
will use a notation like prop = (name : type) for properties and assign = (to←
from, assignT ime) for assignments. Note also that in Figure 1 a11.message is
equal to a21.message and a12.message is equal to a23.message.

Element Properties Assignments
p1.process req : String, ans : String req ← “need meds . . . ”, before
a11.message msg req : String
a11 msg req ← req, before
a12 ans← msg ans, after
p2.process req : String, ans : String
a21 req ← msg req, after
a22 ans← “recipe for meds . . . ”, after
a23.message msg ans : String
a23 msg ans← ans, before

Table 1. The example diagram’s non-visual attributes

53

Firstly, both the Patient pool (p1) and the Doctor pool (p2) are mapped to
agents (Rule 1), each holding a plan for the pool’s process (Rule 2).

p1 =⇒ Λp1 := (“Patient”, {πp1}, ∅, ∅, ∅)
πp1 := (“proc patient”, [] , [] , [])

The plan’s In- and Out-lists are empty, since the start- and end-events in
this simple example diagram are not of type Message and thus do not have a
mapping. Also, the activities a22, a31 and a32, which are not further specified
(e.g. as script-tasks), will simply be referred to by their ids.

The mapping of the first send-task would look like the following (Rule 7):

a11.message =⇒ µreq := (“msg 1”, “Patient”, “Doctor”, [msg req])
a11.assignments =⇒ assa11

a11 =⇒ send(µreq)

Since it will be up to the actual agent system how to realise the assignments
between the global properties and the message properties we will leave this open
and refer to the mapped assignments of activity x as assx. The other send- and
receive-tasks will map to similar structures and will not be explicitly stated here.

The mapping of the subprocess a24 would result in the following (Rule 5):

a24 =⇒ πa24 := (“accounting”, [] , [] , [])
Πp1 := Πp1 ∪ {πa24}
invoke(accounting)

Finally the control flow has to be mapped, which can be done using a set
of rules like those described in Subsection 4.3. The results of the mapping can
be found in Table 2: Each pool has been mapped to one agent – Λp1 and Λp2 –
holding a plan for the pool’s process and its subprocesses.

The properties of the process, i.e. the global variables, can be found in the
agent’s fact base Θ. The script elements that have been created from the various
flow objects have been arranged in sequences and blocks and inserted into the
plans’ scripts2. In the next section we will have a look on other work that has
been done in this area so far.

5 Related Work

Considering our longterm-goal, which is to use an intuitive graphical process no-
tation for designing multi-agent systems, few related work exists. On the work-
flow level, the usage of petri nets and extensions (e.g. CPN) is studied for a
2 We use the notation x1; x2; x3 for sequences of script elements and x1 ‖ x2 for parallel

execution, which are the only control structures needed in this example.

54

Λp1 = (“Patient”,Πp1, ∅, ∅, Θp1)
Πp1 = {πp1}
Θp1 = {req, ans}
πp1 = (“proc patient”, [] , [] , Xp1)
Xp1 = [assp1.proc;assa11; send(µreq); receive(µans);assa12]
µreq = (“msg 1”, “Patient”, “Doctor”, [msg req])
Λp2 = (“Doctor”,Πp2, ∅, ∅, Θp2)
Πp2 = {πp2, πa24}
Θp2 = {req, ans}
πp2 = (“proc doctor”, [] , [] , Xp2)
Xp2 = [receive(µreq);assa21 ;

(a22;assa22;assa23; send(µans)) ‖ invoke(accounting)]
πa24 = (“accounting”, [] , [] , [a31;a32])
µans = (“msg 2”, “Doctor”, “Patient”, [msg ans])

Table 2. Results of the mapping

while, for example by Aalst et al. [2]. In [18], petri nets are even directly used
to model multi-agent systems. Our approach differs from them in that it uses a
notation that is more common to business users, and thus increases the acces-
sibility to industry. As shown in [10], a semantical analysis is possible as well
by translating business process diagrams into petri nets, but that can be done
without any knowledge of the user about petri nets.

Our approach also relates to model driven architectures (MDA) in the general
case, and in case for multi-agent systems, as for instance described in [5]. Again,
the specification languages used there are usually used by software designers
rather than by business users, and therefore are not suited to bridge the discon-
nect between industry and agent-oriented software design. On the other hand,
they provide a set of interesting methodologies, and are more complete than our
current work, and are thus a good reference point for further investigations.

As the importance and impact of SOA and related technologies starts to
become clear in the area of agent technologies, a number of people have worked
on different ways of incorporating knowledge and experiences of the different
fields. Therefore we want to mention some work that is at least partially related
to what we have presented in this paper. Casella et al. [7] and Mantell [16]
have worked on creating tools to translate UML diagrams to BPEL. Mantell
translates UML activity diagrams to executable BPEL code, while Casella et
al. start from protocol diagrams designed in the UML extension Agent-UML [3]
and create abstract BPEL processes. In addition to that, there exists work that
incorporates web services into multi-agent systems, which in combination with
the previously mentioned approaches would have a similar effect as our work,
but is less straightforward. For instance, Bozzo et al. [4] apply the BDI paradigm
in order to create adaptive systems based on webservices. Here, they start from
a BDI-type multi-agent system (based on AgentSpeak [20]) and extend it to
use web services as primitive actions. A similar work was developed by Vidal et

55

al. [23]. Walton [24] suggests to differentiate between agent interaction protocols
and agent body, and therefore to allow web services (bodies) to be seamlessly
incorporated into multi-agent system, and vice versa. Finally, for an overview on
existing approaches regarding the benefits of combining web services and agency,
see [9].

6 Conclusion

In this paper, we have proposed a way to close the gap that exists between the
different roles which participate in the development of business applications, by
defining a mapping from BPMN to agent concepts. Following this approach, we
defined a set of (abstract) rules, showing how business processes can be modelled
in terms of BDI-type agents. We also argued that the mapping is only one aspect
out of a set of tasks that can be supported by a tool. We additionally proposed the
usage of syntactical and semantical verification, combined with a normalisation
of BPDs. In future, this may lead to a complete methodology for designing and
implementing multi-agent systems. One aspect that is still missing is the data
handling, which has to be incorporated in an appropriate manner.

6.1 Implementation

A transformation from BPMN to JIAC IV (Java-based Intelligent Agent Compo-
nentware) [22], a multi-agent framework based on the BDI paradigm, has lately
been developed in the course of a diploma thesis [14].

For the purpose of this transformation a BPMN editor has been implemented
using Eclipse GMF. It can be used to create and validate BPDs and to initiate the
transformation. Since there is no XML schema or similar given for BPMN, the
editor’s domain model had to be created from scratch and thus is not compatible
with other BPMN editors. However, it supports each single attribute given in the
BPMN specification. The mapping has been implemented as a transformation
tool using both a top-down pass through the BPMN model and a rule-based
transformation, which can be subdivided in four stages: Normalization, element
mapping, structure mapping and clean-up.

Although the mapping from BPMN to JIAC is not yet fully specified and
there is still some work to do to support the transformation of unstructured
workflows, the basics are working fine and simple BPMN diagrams can be trans-
formed to JIAC multi-agent systems.

6.2 Future Work

After having defined a set of basic rules for a mapping from BPMN to agents
there is still much work to be done in the future. First of all, we want to explore
the mapping of the work flow as completely as possible. Therefore we will also
identify any further requirements that are needed on the agents side in order to

56

capture the desired functionality. To this end, it seems to be necessary to define
or use an existing platform independent agent metamodel.

On a higher level, we plan to extend our approach to a complete methodology.
The first thing to consider is the integration of data types as a fixed part of the
design process. It is planned to combine BPMN with OWL [17] and OWL-S
respectively, such that the extension is supported by well-founded concepts. An
additional advantage is that this allows to define semantical services in terms of
preconditions and effects.

Another interesting research task concerns the mapping into the opposite
direction, i.e. from agents to BPMN. Since multi-agent systems are naturally
complex, a good visualisation of their workflow, the interaction protocols and
organisational structures would increase the understanding of existing systems
significantly. Ideally, this would also help to identify in which parts the two
models diverge in the power of expressiveness, and what extensions are needed
in order to adjust this discrepancy.

References

1. Foundation for Intelligent Physical Agents (FIPA). Specification index, 2007.
2. W. Aalst. The Application of Petri Nets to Workflow Management. The Journal

of Circuits, Systems and Computers, 8(1):21–66, 1998.
3. B. Bauer, J. P. Müller, and J. Odell. Agent UML: A Formalism for Specifying

Multiagent Software Systems. In P. Ciancarini and M. Wooldridge, editors, Agent-
Oriented Software Engineering, 1st International Workshop, AOSE 2000, Revised
Papers, volume 1957 of LNCS, pages 91–104. Springer-Verlag, 2001.

4. L. Bozzo, V. Mascardi, D. Ancona, and P. Busetta. COOWS: Adaptive BDI Agents
meet Service-Oriented Computing – extended abstract. In M. P. Gleizes, G. A.
Kaminka, A. Nowé, S. Ossowski, K. Tuyls, and K. Verbeeck, editors, Proceedings of
the 3rd European Workshop on Multi-Agent Systems (EUMAS’05), pages 473–484.
Koninklijke Vlaamse Academie van Belie voor Wetenschappen en Kunsten, 2005.

5. A. BRANDO, V. SILVA, and C. LUCENA. A model driven approach to develop
multi-agent systems. Technical report, Departmento de Informtica - Pontifcia Uni-
versidade Catlica do Rio de Janeiro - PUC-Rio, 2005.

6. M. E. Bratman. Intentions, Plans, and Practical Reason. Havard University Press,
Cambridge, MA, 1987.

7. G. Casella and V. Mascardi. From AUML to WS-BPEL. Technical Report DISI-
TR-06-01, Dipartimento di Informatica e Scienze dell’Informatione, Università di
Genova, 2006.

8. O. Committee. Web Services Business Process Execution Language (WS-BPEL)
Version 2.0. Technical report, Oasis, 2007.

9. I. Dickinson and M. Wooldridge. Agents are not (just) web services: considering
BDI agents and web services. In Proceedings of the 2005 Workshop on Service-
Oriented Computing and Agent-Based Engineering (SOCABE’2005), Utrecht, The
Netherlands, July 2005.

10. H. Endert, B. Hirsch, T. Küster, and S. Albayrak. Towards a Mapping From
BPMN to Agents. In J. Huang, R. Kowalczyk, Z. Maamar, D. Martin, I. Müller,
S. Stoutenburg, and K. Sycara, editors, Service-Oriented Computing: Agents, Se-
mantics, and Engineering (SOCASE-2007), volume 4504. Springer Verlag, May
2007.

57

11. S. Franklin and A. Graesser. Is it an Agent, or Just a Program?: A Taxonomy
for Autonomous Agents. In ECAI ’96: Proceedings of the Workshop on Intelligent
Agents III, Agent Theories, Architectures, and Languages, pages 21–35, London,
UK, 1997. Springer-Verlag.

12. O. M. Group. Business Process Modeling Notation (BPMN) Specification. Fi-
nal Adopted Specification dtc/06-02-01, OMG, 2006. http://www.bpmn.org/

Documents/OMGFinalAdoptedBPMN1-0Spec06-02-01.pdf.
13. B. Kiepuszewski, A. H. M. ter Hofstede, and C. Bussler. On Structured Workflow

Modelling. In CAiSE ’00: Proceedings of the 12th International Conference on
Advanced Information Systems Engineering, pages 431–445, London, UK, 2000.
Springer-Verlag.

14. T. Küster. Development of a Visual Service Design Tool providing a mapping from
BPMN to JIAC. Master’s thesis, Technische Universität Berlin, 2007.

15. R. Liu and A. Kumar. An Analysis and Taxonomy of Unstructured Workflows.
In W. M. P. van der Aalst, B. Benatallah, F. Casati, and F. Curbera, editors,
Business Process Management, volume 3649, pages 268–284, 2005.

16. K. Mantell. From UML to BPEL — Model Driven Architecture in a Web Services
World. Technical report, IBM, 2005. http://www-128.ibm.com/developerworks/
webservices/library/ws-uml2bpel/.

17. D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language. W3C
Recommendation, 2004. http://www.w3.org/TR/owl-features/.

18. D. Moldt and F. Wienberg. Multi-Agent-Systems Based on Coloured Petri Nets.
In ICATPN, pages 82–101, 1997.

19. C. Ouyang, W. van der Aalst, M. Dumas, and A. ter Hofstede. Translating BPMN
to BPEL. Technical Report BPM-06-02, BPMCenter.org, 2006.

20. A. S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In R. van Hoe, editor, Agents Breaking Away, 7th European Workshop
on Modelling Autonomous Agents in a Multi-Agent World, MAAMAW’96, volume
1038 of LNCS, pages 42–55, Eindhoven, The Netherlands, January 1996. Springer
Verlag.

21. W. Sadiq and M. E. Orlowska. Analyzing process models using graph reduction
techniques. Inf. Syst., 25(2):117–134, 2000.

22. R. Sesseler. Eine modulare Architektur für dienstbasierte Interaktionen zwischen
Agenten. PhD thesis, Technische Universität Berlin, 2002.

23. J. M. Vidal, P. Buhler, and C. Stahl. Multiagent Systems with Workflows. IEEE
Internet Computing, 8(1):76–82, January/February 2004.

24. C. Walton. Uniting Agents and Web Services. In Agentlink News, volume 18, pages
26–28. AgentLink, 2005.

58

Roles in Coordination and in

Agent Deliberation: A merger of concepts

Guido Boella1, Valerio Genovese1, Roberto Grenna1, and
Leendert van der Torre2

1 Dipartimento di Informatica, Università di Torino,
guido@di.unito.it, valerio.click@gmail.com, grenna@di.unito.it

2 University of Luxembourg, Luxembourg
leendert@vandertorre.com

Abstract. In this paper we generalize and merge two models of roles
used in multiagent systems which address complementary aspects: en-
acting roles and communication among roles in an organization or insti-
tution. We do this by proposing a metamodel of roles and specializing
the metamodel to fit two existing models. We show how the two ap-
proaches can be integrated since they deal with complementary aspects:
[1] focuses on roles as a way to specify interactions among agents, and,
thus, it emphasizes the public character of roles. [2] focuses instead on
how roles are played, and thus it emphasizes the private aspects of roles:
how the beliefs and goals of the roles become the beliefs and goals of the
agents. The former approach focuses on the dynamics of roles in func-
tion of the communication process. The latter approach focuses on the
internal dynamics of the agents when they start playing a role or shift
the role they are currently playing.

1 Introduction

In the last years, the usefulness of roles in designing agent organizations has been
widely acknowledged. Witness not only the papers appeared at AAMAS, IAT,
but also the creation of specialized workshops which have agent organizations
(COIN, ROLES, AOSE, NorMAS, etc.) among their topics.

Many different models have been designed. Some of them use roles only in
the design phases of a MAS [3], while other ones consider roles as first class
entities which exist also during the runtime of the system [4]. Some of them
focuses on how roles are played by agents [2], other ones on how roles are used
in communication among agents in organizations [1].

This heterogeneity of the way roles are defined and used in MAS risks to
be a danger for the interoperability of agents in open systems, since each agent
entering a MAS can have a radically different notion of role. Thus, the newly en-
tered agents cannot be governed by means of organizations regulating the MAS.
Imposing to all agent designers a single notion of role is a strategy that cannot

59

have success. Rather, it would be helpful to design both multiagent infrastruc-
tures that are able to deal with different notions of roles, and to have agents
which are able to adapt to open systems which use different notions of roles in
organizations. This alternative strategy can be costly if it is not possible to have
a general model of role that is compatible, or can be made compatible with other
existing concepts.

In this paper we generalize and merge two models of roles used in multia-
gent systems, in order to promote the interoperability of systems. The research
question is: How to combine the model of role enactment by [2] with the model
of communication among organizational roles of [1]?

We answer these questions by extending to agents a metamodel of roles de-
veloped for object oriented systems [5]. The relevant questions, in this case, are:
how to introduce beliefs, goals and other mental attitudes in objects, and how
to pass from the method invocation paradigm to the message passing paradigm.

Then we specialize the metamodel to model two existing approaches and
we show how they can be integrated in the metamodel since they deal with
complementary aspects. We choose to model the proposals of [1] and [2] since
they are representative of two main traditions. The first tradition is using roles
to model the interaction among agents in organizations, and the second one is
about role enactment, i.e., to study how agents have to behave when they play
a role.

From one side, organizational models are motivated by the fact that agents
playing roles may change, for example a secretary may be replaced by another
one if she is ill. Therefore, these models define interaction in terms of roles
rather than agents. In [1] roles model the public image that agents build during
the interaction with other agents; such image represents the behavior agents
are publicly committed to. However, this model leaves unspecified, how given a
role, its player will behave. This is a general problem of organizational models
which neglect that when, for example, a secretary falls ill, there are usually
some problems with ongoing issues (the new secretary does not know precisely
the thing to be done, arrangements already made etc.). So having a model of
enacting and deacting agents surely leads to some new challenges, which could
not be discussed, simulated or formally analyzed without this model.

In contrast, the organizational view focuses on the dynamics of roles in func-
tion of the communication process: roles evolve according to the speech acts
of the interactants, e.g. the commitment made by a speaker or the commands
made by other agents playing roles which are empowered to give orders. In this
model roles are modeled as sets of beliefs and goals which are the description
of the expected behavior of the agent. Roles are not isolated, but belongs to
institutions, where constitutive rules specify how the roles change according to
the moves played in the interactions by the agents enacting the roles.

[2] focuses, instead, on how roles are played by an agent , and, thus, on the
private aspects of roles. Given a role described in terms of beliefs, goals, and other
components, like plans, their model describe how these mental attitudes become
the beliefs and goals of the agents. In this model roles are fixed descriptions,

60

so they do not have a dynamics like in the model of [1]. Moreover, when roles
are considered inside organizations new problems for role enactment emerge:
for example, how to coordinate with the other agents knowing what they are
expected to do in their role, and how to use the powers which are put at disposal
of the player of the role in the organization. The same role definition should lead
to different behaviors when the role is played in different organizations.

In contrast, it specifies the internal dynamics of the agents when they start
playing (or enacting in their terminology) a role or shift the role they are cur-
rently playing (called the activated role). So they model role enacting agents:
agents that know which roles they play, the definitions of those roles, and which
autonomously adapt their mental states to play the roles.

Despite the apparent differences, the two approaches are compatible since
they both attributes beliefs and goals to roles. So we study by means of the
metamodel how they can be combined to have a more comprehensive model of
roles.

The paper is structured as follows. In Section 2 we describe the requirements
on agents and roles in order to build a metamodel; in Section 3 we formally
define the metamodel for roles together with its dynamics; in Section 4 we de-
fine the basic notions to model agents that play roles; Section 5 deals with the
modeling of enacting agents as in [2]; Section 6 introduces and models roles to
deal with coordination in organizations; in Section 7 we merge [2] and [1] into
the framework introduced in Section 3; Conclusions end the paper.

2 Agents and roles

Since the aim of this paper is to build a metamodel to promote interoperability,
we make minimal assumptions on agents and roles.

The starting point of our proposal is a role metamodel for object orientation.
The relation of objects and agents is not clear, and to pass from object to agents
we take inspiration from the Jade model [6].

Agents, differently than objects, do not have methods that can be invoked
starting from a reference to the object. Rather, they have an identity and they
interact via messages. Messages are delivered by the MAS infrastructure, so that
agents can be located in different platforms. The messages are modeled via the
usual send-receive protocol. We abstract in the metamodel from the details of
the communication infrastructure (whether it uses message buffers, etc.).

Agents have beliefs and goals. Goals are modeled as methods which can be
executed only by the agent itself when it decides to achieve the goal.

As said above, we propose a very simple model of agents to avoid controversial
issues. When we pass to roles, however, controversial issues cannot be avoided.

The requirements to cope with both models of roles we want to integrate are:

– Roles are instances, associated in some way to their players.
– Roles are described (at least) in terms of beliefs and goals.
– Roles change over time.

61

– Roles belong to institutions, where the interaction among roles is specified.

– The interaction among roles specifies how the state of roles changes over
time.

In [1] roles are used to model interaction, so agents exchange messages ac-
cording to some protocol passing via their roles. This means that the agent have
to act on the roles, e.g., to specify which is the move the role has to play in
certain moment. Moreover, roles interact with each other.

[2]’s model specifies how the state of the agent changes in function of the
beliefs and goals of the roles it plays. However, it does not consider the possibility
that the state of the role change and, thus, it ignores how the agent becomes
aware of the changes of beliefs and goals of the role.

To combine the two models we have to specify how the interaction between
an agent and its role happens when the agent changes the state of the role or
the state of the role is changed by some event. A role could be considered as an
object, and its player could invoke a method of the role. However, this scenario
is not possible, since the roles are strictly related to the institution they belong
to, and we cannot assume that the institution and all the agents playing roles in
the institution are located on the same agent platform. So method invocation is
not possible unless some sophisticated remote method invocation infrastructure
is used. Moreover, the role have to communicate with its player when its beliefs
and goals are updated. Given that the agent is not an object, the only possibility
is that a role sends a message to its player. As a consequence, we decide to model
the interaction between the agent and the role by means of messages too.

Finally, we have to model the interaction among roles. Since all roles of an
institution belongs to the same agent platform, they do not necessarily have to
communicate via messages. To simplify the interaction, we model communication
among roles by means of method invocation.

The fact that roles belong to an institution has another consequence. Accord-
ing to the powerJava model of roles in object oriented programming languages,
roles, seen as objects, belong to the same namespace of the institution. This
means that each role can access the state of the institution and of the sibling
roles. This allows to see roles as a way to specify coordination [7].

In a sense, roles are seen both as objects, from the internal point of view of
the institution they belong to, and as agents, from the point of view of their
players, with beliefs and goals, but not autonomous. Their behavior is simply
to:

– Receive the messages of their players.

– Execute the requests of their player of performing the interaction moves
according to the protocol allowed by the institution in that role.

– Send a message to their players when the interaction move performed by the
role itself or by some other role results in a change of state of the role.

62

3 A Logical Model for Roles

In [5] the model is structured in three main levels: universal, individual and
dynamic; here we decide not to talk about the universal level an concentrate
ourself on agents dynamics. We define the formalism of the framework in a way
as much general as possible, this gives us an unconstrained model where special
constraints are added later.

3.1 Individual level

The individual level includes in this paper some elements of the universal one
and the elements of this level are individuals (or instances) of the types defined
at the universal level. This level is composed by a snapshot model that describes
in a particular moment the relationships between individual players contexts and
roles, and a dynamic model which links snapshots and actions modeling how the
system changes when an action is executed. In the formalization of the model we
use objects as basic elements upon which the model is based; we refer to Section
4 for a complete discussion that underlines how the model can be used to grasp
roles dynamics in MAS.

Definition 1 A snapshot model is a tuple

< O, R types, I contexts, I players, I roles, Val, I contraints
IRoles, I Attributes, I Operations, IAttr >

where:

– O is a domain of objects, for each object o is possible to refer to its attributes
and operations through πI Attr(o) and πI Op(o), respectively.

– R types is a set of types of roles.
– I contexts ⊆ O is a set of institutions.
– I players ⊆ O is a set of actors.
– I roles ⊂ O is a set of roles instances.
– I Attributes is the set of attributes.
– I Operations is the set of operations.
– Val is a set of values.
– I constraints is a set of integrity rules that constraint elements in the snap-

shot.

We usually refer elements in I contexts, I players and I roles respectively, insti-
tutions, actors and roles instances.
The snapshot model has also a few functions and relations:

– IRoles is a role assignment function that assigns to each role R a relation on
I context x I players x I roles.

– IAttr is an assignment function which it takes as arguments an object d ∈ O,
and an attribute p ∈ πI Attr(d), if p has a value v ∈ Val it returns it, ∅
otherwise.

63

– I AS ⊆ O x I Attributes: is an attribute assignment relationship, through
which we define what are the attributes assigned to an object in the defined
snapshot.

– I OS ⊆ O x I Operations: is an operations assignment relationship, through
which we define what are the operations assigned to an object in the defined
snapshot.

– I OT ⊆ O x R types: is an type assignment relationship, through which we
define the type of every role instance in the snapshot.

– I PL ⊆ I players x R types: this relation states, which are the players that
can play a certain role types.

– I RO ⊆ I roles x I contexts: each role is linked with one or (potentially more)
context.

Generally, when a role instance x is an individual of the type D, we write
x :: D. If a ∈ πI Attr(x) we write x.a ∈ I Attributes as the attribute instance
assigned to object x, the same holds for elements in I Operations.

The role assignment function IRoles gives us the notion of an actor who plays
a role within a specific context: if i is an institution, a an actor, and o :: R a
role, (i,a,o)∈ IRoles(R) is to be read as: “the object o represents agent a playing
the role R in institution i”. We will often write R(i,a,o) for this statement, and
we call o the role instance.

Suppose we have a role instance employee, and that the value of the attribute
salary is 1000 e usually, instead of writing IAttr(employee, salary) = 1000, we
write

salary(employee) = 1000

3.2 The dynamic model

The dynamic model relies on the individual level and defines a structure to
properly describe how the framework evolves as a consequence of executing an
action on a snapshot. In Section 4 and 5, we describe how this model constraints
agents’ dynamics.

Definition 2 A dynamic model is a tuple

< S, TM, Actions, Requirements, D constraints, IActions, IRolest
πReq, IRequirementst

>

where:

– S is a set of snapshots.
– TM ⊆ S x IN: it is a time assignment relationship, such that each snapshot

has an associated unique time t. For the sake of simplicity we define a discrete
time through positive natural numbers.

– Actions is a set of actions.
– Requirements is a set of requirements for playing roles in the dynamic model.
– D contraints is a set of integrity rules that constraints the dynamic model.

64

– IActions maps each action from Actions to a relation on a set of snapshots P.
IActions(s, a, t) tells us which snapshots are the result of executing action a

at time t from a certain snapshop. 1 This function returns a couple in TM
that binds the resulting snapshot with time t+1. In general, to express that
at time t is carried action a we write at.

– About IRolest
we say that Rt(i, a, o) is true if there exists, at a time t, the

role instance R(i, a, o).
– πReq(t, R) returns a subset of Requirements present at a given time t for the

role of type R, which are the requirements that must be fulfilled in order to
play roles of type R.

– IRequirementst
is a function that, given (i,a,R,t) returns True if the actor a

fills the requirement in πReq(t, R) to play the role R in the institution i, False
otherwise. We often write Reqt(i, a, R).

Intuitively, the snapshots in S represent the state of a system at a certain time.
Looking at IActions is possible to identify the course of actions as an ordered
sequence of actions such that:

a1; b2; c3

represents a system that evolves due to the execution of a, b and c at consecutive
times. We refer to a particular snapshot using the time t as a reference, so that
for instance πI Attrt

refers to πI Attr in the snapshot associated with t in TM.
Actions are described using dynamic modal logic [8], in paricular they are

modelled through precondition laws and action laws of the following form:

2(A ∧B ∧ C ⊃ 〈d〉⊤) (1)

2(A
′

∧B
′

∧ C
′

⊃ [d]E) (2)

Where the 2 operator express that the quantified formulas hold in all the possible
words. Precondition law (1) specifies the conditions A,B and C that make an
atomic action d executable in a state. (2) is an action law2 which states that if
preconditions A

′

,B
′

and C
′

to action d holds, after the execution of d also E

holds.
In addition we introduce complex actions which specify complex behaviors

by means of procedure definitions, built upon other actions. Formally a complex
action has the following form:

〈p0〉ϕ ⊂ 〈p1; p2....; pm〉ϕ

p0 is a procedure name, “;” is the sequencing operator of dynamic logic, and
the pi’s, i ∈ [1, m], are procedure names, atomic actions, or test actions3.

1 Notice that given an action, we can have several snapshots because we model ac-
tions with modal logic in which, from a world it is possible to go to more than
one other possible world. This property is often formalized through the accessibility

relationship. Thus, each snapshot can be seen as a possible world in modal logic.
2 Sometimes action laws are called effect rules because E can be considered the effect

of the execution of d.
3 Test actions are of the form 〈ψ?〉ϕ ≡ ψ ∧ ϕ.

65

Now we show some examples of actions that can be introduced in the dynamic
model in order to specialize the model.

Role addition and deletion

For role addition and deletion actions we use, respectively R, i →֒t a, and
R, i ←֓ t a. Then using the notation of dynamic logic introduced above, we
write:

2(Reqt(i, a, R) ⊃ 〈R, i →֒t a〉⊤)

to express that, if actor a fills the requirements at time t (Reqt(i, a, R) is True),
a can execute the role addition action that let him play role of type R.

The above definition gives us the possibility to model that a role assignment
introduces a role instance:

2(⊤ ⊃ [R, i →֒t a]∃xRt+1(i, a, x))

or the fact that if a does not already play the role R within institution i, then
the role assignment introduces exactly one role instance:

2(¬∃xR(i, a, x) ⊃ [R, i →֒t a]∃!xRt+1(i, a, x))

Methods

There are other actions through which is possible to change the model as
well, for instance agents may assign new values to their attributes [5]. Again,
the effects of such changes may depend on choices made earlier (e.g. in the case
of delegation, changing the attribute value of an object may change the value of
that attribute also in some roles he plays).

Here, we will focus on the case in which the attribute’s values can be changed
by the objects themselves. What we will do is to define methods of objects with
which they can change attributes of their own or those of others. Actually, to sim-
plify the model, we define one single primitive action: sett(o1, o2, attr, v), which
means that object o1 sets the value of attr on object o2 to v at time t. If o1

and o2 are autonomous agents, the set(o1, o2, attr, v) can be executed only when
o1 = o2.

Now, we will of course have that:

2(⊤ ⊃ [sett(o1, o2, attr, v)]attrt+1(o2) = v)

which means that in any state, after the execution of set, if the action of setting
this attribute succeeds, then the relevant object will indeed have this value for
that attribute.

66

Operations

Elements of our framework come with operations that can be executed at
the individual level in order to change the model dynamically, the semantics
of each operations can be given exploiting the actions defined for the dynamic
model. Suppose, for instance, to have an object individual x :: Person with
x.mail address attribute, and an operation x.change mail that changes the value
of x.mail address to its argument. Using the set primitive is possible to define
how the model evolves after the execution of x.change mail operation trough the
following axiom:

[x.change mailt(s)]ϕ ≡ [sett(x, x, mail adress, s)]ϕ

Where x.change mailt(s) identifies the action carried by x at time t to execute
the instance operation x.change mail; objects can execute only operations that
are assigned to them by I OS relation. In Section 5 we define exec of certain
operations as complex actions because we have to describe a more complex
semantics.

4 Roles in Multiagent Systems

Since here we have been talking about objects as cornerstone of the individual
level, now in order to switch from objects to agents, it must be underlined that
an object of the meta-model does not necessarily overlap with object in OO
programming. We used the terms object to refer to individuals, and terms like
attribute and operation to talk about state and bheavior of an entity.

In order to be as much general as possible, we define elements of the meta-
model with only those features that are essential to talk about roles and leave
the possibility to specify the abstract model depending on which account of role
we want to grasp. This approach gives us the possibility to talk about object
and agent using the same framework, and specifing each time which are the
charateristics of role’s player. In moving from objects to agents we need to state
the following:

– Attributes are complex properties of the agent which describe its internal
features as well as its mental attitudes (belief, goals, plans etc.).

– Operations are actions that the agent does in the system.
– Agents at individual level are supposed to be autonomous so they cannot be

forced to execute an action from an external entity.
– The only way to interact between agents is through message passing.
– The system in which agents interacts is represented by a unique institution.
– Role instances are linked with one and only one system. In order to express

this point we add into I Constraint of every snapshot the following integrity
rule:

r ∈ I roles↔ ∃!c ∈ I contexts :< r, c >∈ I RO

67

For the sake of generality, we prefer not to specify how agents reason on the
basis of their mental attitudes; what we want to model is how mental attitudes
evolve as a consequence of playing a role and what are the elements on which
the agent have to carry out its resoning process.

It is important to understand that the meta-model is not a framework for
agent specification, the elements listed above are the basic features that we think
are foundamental to talk about role in MAS, but of course they are not sufficient
to utterly model agents.

5 Enact and Deact Roles

In [2], the problem of formally defining the dynamics of roles, is tackled identifing
the actions that can be done in a open system such that agents can enter and
leave. In this setting roles have existence outside the agents in the implemented
system, so “agents are not completely defined by the roles they play”[2]. This
view leads to a definition of roles that sees them as strictly linked with a system
(context), instantiable and with their own proper identity.

In [2] four operations to deal with role dynamics are defined: enact and deact,
which mean that an agent starts and finishes to occupy (play) a role in a system,
and activate and deactivate, which means that an agent starts executing actions
(operations) belonging to the role and suspends the execution of the actions.

Although is possible to have an agent with multiple roles enacted simultane-
ously, only one role can be active at the same time.

Before diving into modeling the four basic operations to deal with roles, we
need to match with our framework a few concept defined in [2], following we
report a list of elements together with their definition and then how they fit in
our meta-model:

– Multiagent system: In [2] roles are taken into account at the implementation
level of open MAS, they belong to the system which can be entered or left
by agents dynamically. In our framework is possible to view a system as a
context to which are linked all roles that can be played by the agents.

– Agent role: A role is a tuple 〈σ, γ, ω〉. Where σ are beliefs, γ goals and ω

rules representing conditional norms and obligations. This definition specifies
a role “in terms of the information that becomes available to agents when
they enact the role, the objectives or responabilities that the enacting agent
should achieve or satisfy, and normative rules which can for example be used
to handle these objectives” [2]. With this view we define, for roles of our
framework, a set of complex attributes {beliefs, goals, plans, rules} ∈ I Attr
toghether with the operations that represent actions that an agent can carry
out when it activates the roles instance chosing it from the set of roles it is
playing.

– Agent type: We consider an agent type “as a set of agent roles with certain
constraints and assume that an agent of a certain type decides itself to enact
or deact a role”. To talk about agent types we use classes introduced in the
framework as a specification of agent instances at the individual level, with

68

this in mind we use the PL relationship to link agent classes to agent roles
(role’s classes) so that the set of roles that an agent can enact (play), is
constrainted by I PL.

– Role enacting agent : “We assume that role enacting agents have their own
mental attitudes consisting of beliefs, goals, plans, and rules that may specify
their conditional mental attitudes as well as how to modify their mental
attitudes. Therefore, role enacting agents have distinct objectives and rules
associated to the active role it is enacting, and sets of distinct objectives
and rules adopted from enacted but inactive roles”. In our framework we
define a role enacting agent as a instance x having a set of attributes A that
represent the internal structures used to deliberate.

A = {beliefsa, objectivesa, plansa, rulesa, enacted roles[], active role} ∈ πI Attr(x)

The enacted roles attribute is a role ordered record where each entry with
index i corresponds to a triple 〈σi, γi, ωi〉 which represents the set of beliefs,
objectives, plans and rules associated to roles instance i enacted by x.

As introduced above, the model in [2] identifies four operations to deal with
role dynamics, in order to to grasp the foundamental ideas proposed in the cited
paper, we redefine the enact, deact, activate and deactivate operations respecting
their original meaning. Given a role enacting agent x, a role instance i :: R played
by x in context c such that,

{beliefsr, objectivesr, plansr, rulesr} ∈ πI Attr(i)
{beliefsa, objectivesa, plansa, rulesa, enacted roles[], active role} ∈SA πI Attr(x)

{enact, deact, activate, deactivate} ∈ πI Op(x)

Next we report the semantics of each operation exploiting the set primitive:

〈x.enactt(i)〉ϕ ⊂ 〈R, s →֒ x; sett(x, x, beliefsa, beliefsa ∪ beliefsr);

sett(x, x, enacted roles[i], < objectivesr, plansr, rulesr >)〉ϕ
(3)

〈x.deactt(i)〉ϕ ⊂ 〈R, s ←֓ x; sett(x, x, enacted roles[i], null)〉ϕ (4)

〈x.activatet(i)〉ϕ ⊂ 〈sett(x, x, active role, enacted roles[i])〉ϕ (5)

〈x.deactivatet(i)〉ϕ ⊂ 〈sett(x, x, active role, null)〉ϕ (6)

In order to be coherent it must be respected a logical order in the execution
of these operations, as in [2]:

– each operation deact(i) is preceded by a enact(i).

– each operation deactivate(i) is preceded by only one instruction activate(i)
that is not preceded by another activate(j).

69

6 The public dimension of roles

In [9] roles are introduced inside institutions to model the interaction among
agents. In [1] the model is specifically used to provide a semantics for agent
communication languages in terms of public mental attitudes attributed to roles.

The basic ideas of the model are:

– Roles are instances with associated beliefs and goals attributed to them.
These mental attitudes are public.

– The public beliefs and goals attributed to roles are changed by speech acts
executed either by the role or by other roles. The former case accounts for the
addition of preconditions and of the intention to achieve the rational effect
of a speech act, the latter one for the case of commands or other speech acts
presupposing a hierarchy of authority among roles.

– The agents execute speech acts via their roles.

This model has been applied to provide a semantics to both FIPA and Social
Commitment approaches to agent communication languages [1]. This semantics
overcomes the problem of the unverifiability of private mental attitudes of agents.

– In order to maintain the model simple enough, we model message passing
extending the dynamic model with two actions (methods) send(x,y,sp) and
receive(y,x,sp). Where send(x,y,sp) should be read as the action carried by x of
sending a speech act (sp) to y and receive(y,x,sp) is the complementary action
of y receiving the message from x. It must be underlined that arguments x
and y can be agents or roles.

– A role only listens for the messages sent by the agents playing it:

〈listen(r)〉ϕ ⊂ 〈P; played by(r, x)?; receive(r, x, sp); D〉ϕ

These rules define a pattern of protocol where P and D have to be read
as possible other actions that can be executed before and after the receive.

– The reception of a message from the agent has the effect of changing the
state of other roles. For example, a command given via a role amounts to
the creation of a goal on the receiver if the sender has authority (within the
system) over it.

2(authoritysys(r, request ⊃ [receive(r, x, request(r, r
′

, act)))]Gr
′

t (act))4

– To produce a speech act, the agent has to send a message to the role speci-
fying the illocutive force, the receiver and the content of the speech act:

〈communicate(a)〉ϕ ⊂ 〈P; send(x, r, sp); D〉ϕ

4
request(r, r

′

, act) is a speech act that has to be read as following: role r asks to r
′

’s
player to do act.
authoritysys(r, request) expresses that role r has the authority to make a request

within system sys.

70

7 The combined model

The two models presented above model complementary aspects of roles: the
public character of roles in communication and how agents privately adapt their
mental attitudes to the roles they play.

In this section we try to merge the two approaches using the metamodel we
presented. On the one hand, the model of [1] is extended from the public side
to the private side, by using [2] as a model of role enacting. In this way, the
expectations described by the roles resulting from the interaction among agents
can become a behavior of agents and they do not remain only a description.

On the other hand, the model of [2] is made more dynamic. In the origi-
nal model the role is given as a fixed structure. The goals of agent can evolve
according to the goal generation rules contained in it, but the beliefs and goals
described by the role cannot change. This is unrealistic, since during the activity
of the agent enacting its role, it is possible that further information are put at
disposal of the role and that new responsibilities are assigned, etc.

This problem can be solved by the merging with the model of [1] and by the
addition of a further element, which is anyway necessary in [1]’s model.

First of all, in [2] roles cannot change since they are not related to a more
extensive context. Instead, in [1], roles belong to institutions together with other
roles. Sibling roles and the institution they belong to are the sources of changes
for the role. Second, in [1], the changes of roles are described by the effects of
the speech acts which can be performed via roles. These two elements can be
added to [2]’s model without apparent contradictions.

The missing element is that both models do not consider the problem of how
the player of a role become aware of the changes in the state of the played role
as a consequence of the actions of other roles. Furthermore, in [2] a role is given
as known by the agent playing the role. This is not a realistic assumption, in
particular, when the state of the role changes over time, but also the way an
agent comes to know the initial state of the role must be explicitly modeled.
Otherwise, all roles instances must be assumed to be publicly known in advance.

In order to merge the two models within the same framework, we need to add
(complex) actions which are able to grasp the dynamics introduced in [1] and [2].
Interactions among agents is done through message passing and, in particular,
through actions send and receive introduced in section 6. Next we are going to
introduce all the speech-acts and complex actions which are needed to grasp the
combined model and then we introduce a running example to clarify their use
defining a course of actions in the dynamic model defined in section 3.2.

An agent who wants to play a role within an open system has to ask to the sys-
tem for a role instance; this process is handled by two speech act: ask to play(R)
and accept to play(r,A), where the first one is sent from the agent to the system
in order to ask to play a role of type R, whereas the second is sent from the
system to the agent, together with the identifier of the role instance r and a set
A of other role instances present in the system, in order to inform the agent with

71

which roles is possible to interact. Next we report the two effect rules associated:

2(⊤ ⊃ [receive(s, x, ask to play(R); send(s, x, accept to play(r, A)]

played bysys(r, x, s)
(7)

2(⊤ ⊃ [send(x, s, ask to play(R); receive(x, s, accept to play(r, A)]

played byag(r, x, s))
(8)

Where s is the system, x the agent, and r a role instance of type R. In this
section we use x,y,z. . . to denote agents, s for the system and r, r

′

, r
′′

. . . for role
instances. Notice that played bysys(r, x, s) and played byag(r, x, s) refer to two dif-
ferent infrastructures; in Rule 7 is the system that, after having acknowledged
the agent request, knows that x is going to play r, whereas in Rule 8 is the
agent that becomes aware of the play relation between x and r. To link the two
predicates with the logical model introduced in Section 3 we have that:

played bysys(r, x, s) ∧ played byag(r, x, s)→ R(s, x, r)

When we are dealing with a single system we can omit s writing played bysys(r, x)
and played byag(r, x).

To enact a role, an agent, provided the identifier of the role instance it wants
to enact, has to send a message to the role and to wait till the role replies with
the information about the state of the role: its beliefs, goal, plans, etc. When
the state is received, the agent can enact the role in the same way described
by Rule 3 in Section 5. In order to model such interaction we introduce two
complex actions tell enact, accept enact and two speech acts accept enact and
inform enact. Following the specification of the complex actions:

〈tell enact(x, r)〉ϕ ⊂ 〈played byag(r, x)?; (send(a1, r1, enact(x, r))〉ϕ (9)

〈accept enactment(r, x)〉ϕ ⊂ 〈receive(r, x, enact(x, r)); played bysys(r, x)?;

send(r, x, inform enact(< beliefsr, objectivesr, plansr, rulesr >))〉ϕ
(10)

When the agent receives the specification of the role he wishes to enact, it can
internalize them as in Rule 3:

2(⊤ ⊃ [receive(x, r, inform enact(< beliefsr, objectivesr, plansr, rulesr >))]

Bx(beliefsr) ∧ x.enacted roles[r] =< objectivesr, plansr, rulesr >)5
(11)

In this combined view is possible that role’s specifications change dynami-
cally, in that case it is up to the role to send a message to its player each time
its state is updated:

〈udpate state(r, x)〉ϕ ⊂ 〈played bysys(r, x)?; (¬G
r
t(q) ∧Gr

t+1(q))?;

send(r, x, inform goal(q))〉ϕ
(12)

Last but not least, we need to model the deactment of a role respecting the
formalization as in Rule 4, therefore we introduce two speech acts deact, ok deact

72

and a complex action confirm deact defined as follows:

〈confirm deact(r, x)〉ϕ ⊂ 〈receive(r, x, deact); played bysys(r, x)?;

send(r, x, ok deact)〉ϕ
(13)

After sending the ok deact, the system will not consider anymore agent x as
player of r:

2(⊤ ⊃ [confirm deact(r, x)]¬played bysys(r, x) (14)

If it is possible for the agent to deact the role, it will receive an ok deact from
its role:

2(⊤ ⊃ [receive(x, r, ok deact)]x.enacted roles[r] = null ∧ ¬played byag(r, x)) (15)

agent_B

agent_A

system_C
1

2

3

6

7

5

4

r1::R1

r2

9

8

Fig. 1. Roles in MAS

Fig. 1 depicts two agents which interact through roles in an open system. At
time t the system has already agent B that enacts role r2 as represented by the
black arrow which goes from agent B to r2. The system evolves as following:

– At time t+1 agent A asks to institution system C to play a role of type R1:

sendt+1(agent A, system C, ask to play(R1))

– At time t+2 system C replies to agent A assigning to him the role instance
r1:

sendt+2(system C, agent A, accept to play(r1, {r2}))

– At time t+3 agent A wants to enact (internalize) role r1:

tell enactt+3(agent A, r1)

73

– At time t+4 role r1 receives the speech act from agent A asking for enactment
and accepts it, replying to agent A with its specifications:

accept enactmentt+4(r1, agent A)

– Once that agent A has enacted the role as in Rule 3 it decides, at time t+5,
to activate it 6 and then to ask to the agent playing r2 to do an action act.
In other words:

sendt+5(agent A, r1, request(r1, r2, act))

When r1 receives a send from agent A asking for an act of r2, first it checks
if the sender has the authority in the system to ask such an act, if so r2
acquires the goal to do act:

2(authoritysys(r
′

, act) ⊃ [receive(r, agent A, request(r, r
′

, act))]Gr
′

(act))

Is important to underline that because role internals are public to other roles
in the same system, it is always possible for r1 to check or modify r2’s goals.
So, at time t+6 we have:

receivet+6(r1, agent A, request(r1, r2, act))

– Now that r2 has updated its internal state (i.e. its goals) it must inform its
player agent B:

update statet+7(r2, agent B)

Where update state is modelled as in Rule 12
– At time t+8 agent A decides to deact the role r1:

sendt+8(agent A, r1, deact)

– Finally, at time t+9, r1 confirm the deact:

confirm deactt+9(r1, agent A)

8 Conclusions and Further Works

In this article we merged two represetative role’s models in MAS by introducing
a metamodel taken from [5] and adapting it to agents. In particular, we added
representations of typical agents’ mental attitudes and a framework to deal with
message passing. The model has been specialized in order to describe both public
and private dimensions of roles [1,2]. Finally, we merged the two dimensions
defining a group of actions together with their semantics and we modelled a
running example to show a possible course of events.

Further works point in two main directions: adapting the proposed meta-
model to other roles approaches like [10], and introducing a formal proof theory
of roles’ actions dynamics and related apects starting from [8].

6 Activating a role means to take into account its specification during the private agent
deliberation process, so there is no need to introduce a public action in the dynamic
model to represent the activation of a role.

74

References

1. Boella, G., Damiano, R., Hulstijn, J., van der Torre, L.: ACL semantics between
social commitments and mental attitudes. In: International Workshops on Agent
Communication, AC 2005 and AC 2006. Volume 3859 of LNAI. Springer, Berlin
(2006) 30–44

2. Dastani, M., van Riemsdijk, B., Hulstijn, J., Dignum, F., Meyer, J.J.: Enacting
and deacting roles in agent programming. In: Procs. of AOSE’04, New York (2004)
189–204

3. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: The
Gaia methodology. IEEE Transactions of Software Engineering and Methodology
12(3) (2003) 317–370

4. Colman, A., Han, J.: Roles, players and adaptable organizations. Applied Ontology
(2007)

5. Valerio Genovese: Towards a general framework for modelling roles. In Guido
Boella, Leon van der Torre, Harko Verhagen, eds.: Normative Multi-agent Systems.
Number 07122 in Dagstuhl Seminar Proceedings, Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2007)

6. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with
a FIPA-compliant agent framework. Software - Practice And Experience 31(2)
(2001) 103–128

7. Baldoni, M., Boella, G., van der Torre, L.: Roles as a coordination construct: In-
troducing powerJava. Electronic Notes in Theoretical Computer Science (ENTCS)
Procs. of the First International Workshop on Methods and Tools for Coordinating
Concurrent, Distributed and Mobile Systems (MTCoord 2005) 150 (2006) 9–29

8. M. Baldoni, C. Baroglio, A. Martelli, V. Patti: Reasoning about interaction
protocols for customizing web service selection and composition. Journal of
LOgic and Algebraic Programming, special issue on Web Services and Formal
Methods,70(1):53-73 (2007)

9. Boella, G., van der Torre, L.: The ontological properties of social roles in multi-
agent systems: Definitional dependence, powers and roles playing roles. Artificial
Intelligence and Law Journal (AILaw) (2007)

10. Omicini, A., Ricci, A., Viroli, M.: An algebraic approach for modelling organisa-
tion, roles and contexts in MAS. Applicable Algebra in Engineering, Communica-
tion and Computing 16 (2005) 151–178

75

MAgtALO: Using Agents, Arguments, and the
Web to Explore Complex Debates

Simon Wells and Chris Reed

School of Computing, University of Dundee,
swells@computing.dundee.ac.uk

chris@computing.dundee.ac.uk

Abstract. This paper introduces the MAgtALO system, a prototype
environment for online debate that aims to provide a mechanism for
supporting naturalistic dialogue. MAgtALO demonstrates how dialogue
protocols can be harnessed to achieve two objectives: first, to support
flexible intuitive interaction with data in complex, contentious domains
in order to facilitate understanding and assimilation; and second, to pro-
vide mechanisms for structured knowledge elicitation that allow the re-
sources in those domains to be expanded.

1 Introduction

Online argumentation systems are designed to support humans in arguing on
specific topics. Over the past two decades there have been an enormous number
of software systems developed to support such online argumentation. Many of
these systems have remained within the confines of the academic laboratory, but
some larger-scale projects have been deployed in the wild [6], [1].

Possibly spurred by the high-visibility arguments expressed in the Iraq Study
Group Report and The Stern Review on the Economics of Climate Change which
feature strong explicit argumentative structure, the online community has ex-
pressed interest in arguments and the processes through which they are devel-
oped. For example, two recent systems which stem from the online community
demonstrate the growing appetite for argumentation, convinceme.net and de-
batepedia.com.

Convinceme.net, illustrated below, utilises paired message boards, one sup-
porting and one attacking the topic of debate, and provides a Web 2.0 based
environment for the construction and exploration of arguments so constructed.
Both active participants within a debate and spectators can vote on specific
posts and the relative positions of posts is determined based upon (i) the num-
ber of votes garned in open debate, (ii) the total number of votes cast in the
head-to-head arguments, and (iii) a fixed number of points awarded to the argu-
ments which become “King of the Hill” by attracting more votes that any other
in a single debate.

76

Debatepedia.com, illustrated below, uses a wikipedia style interface as a tool
for exploring complex topical debates. Structure and rules are imposed on con-
tributors to encourage the construction of logic trees which are used to break a
thesis down into a set of subquestions which can attract a variety of evidence pro
and con. The aims of each tool are different, convinceme.net is developed as a
source of competitive entertainment whereas debatepedia.com aims to facillitate
the public understanding of complex domains.

Academic-oriented systems are generally built upon a sound argumentation
theoretic foundation which provides a rich set of argumentative moves and struc-
tures. The presentation and framing of these systems however can be a barrier
to wider public adoption. In contrast the online systems enjoy a broad user
base but little foundation in argumentation theory leaving their users with an
impoverished set of moves and tools that they can use.

This paper introduces MAgtALO (Multi-AGenT Argumentation, Logic and
Opinion; also a Tagalog word for disagreement), a prototype system that aims
to incorporate the strengths of each approach, building upon the foundations
found in argumentation theory which provides theoretical models of argument
and argumentative interaction during dialogue, and adopting the appealing and

77

intuitive interfaces and interaction mechanisms found in contemporary online-
community originated argumentation systems. This is achieved through the
adoption of a Web 2.0 interface, a multiagent system based backend and in-
tegration of representation formats for exchange of arguments and regulation
of argumentative interaction. The goal is to support users in their engagement
with complex domains in which there are multiple, conflicting points of view,
allowing users to intuitively navigate the disagreement space, and facilitating the
structured expansion of the argument resources available to the system through
argument-based knowledge elicitation.

2 Theoretical Foundations

Argumentation theory provides the theoretical foundations which underlie the
knowledge structure and interactions of MAgtALO agents. Agent knowledge is
structured using the Argument Markup Language (AML) [13] which provides a
way to relate statements to form argument structures. Agent interactions are
specified using Dialectical games which have recently become a popular way of
structuring inter-agent communications [10].

2.1 Dialectical Games

When a user interacts with MAgtALO the interaction proceeds according to
a protocol which specifies what kinds of things can be said at each juncture
in the dialogue. The protocol is a type of simple Dialectical Game developed
specifically to underpin online argumentation in ill-structured and contentious
domains. Dialectical games are turn-taking games which are used to structure
the interactions between a dialogue’s participants. Players use their turn to make
moves which correspond to the kinds of things that they can say for example,
asserting, conceding, &c. and the rules specify which moves are legal during any
given turn. Dialogical commitment is recorded in stores associated with each
player and is used as the basis for formulating some rules and as a way to record
each player’s position.

Dialectical games have been explored in philosophy as a way of analysing par-
ticular types of reasoning such as the fallacy of begging the question [8]. More
recently, they have also been used as normative ideals for discourse in specific
domains such as ethical discussion [15]. These philosophical investigations have,
over the past decade or so, been providing rich resources for building inter-agent
communication protocols. One of the earliest and best known is Mackenzie’s
game called DC [8]. DC specifies three types of rule; Locutional rules specify the
types of moves available; Commitment rules specify how commitment stores are
updated after a move; Rules of dialogue specify when moves are legal. The rules
of DC are as follows:

Locutions
(i) Statements. ’P’, ’Q’, etc. and truth-functional compounds of statements: ’Not P’, ’If P then

78

Q’, ’Both P and Q’.
(ii) Withdrawals. The withdrawal of the statement ’P’ is ’No commitment P’.
(iii) Questions. The question of the statement ’P’ is ’Is it the case that P?’
(iv) Challenges. The challenge of the statement ’P’ is ’Why is it to be supposed that P?’ (or
briefly ’Why P?’).
(v) Resolution Demands. The resolution demand of the statement ’P’ is ’Resolve whether P’.

Commitment Rules
Statements, CRS: After a statement ’P’, unless the preceding event was a challenge, ’P’ is
included in both participants’ commitments.
Defences, CRY S: After a statement ’P’, when the preceding event was ’Why Q?’, both ’P’
and ’If P then Q’ are included in both participants’ commitments.
Withdrawals, CRW : After the withdrawal of ’P’, the statement ’P’ is not included in the
speaker’s commitment. The hearer’s commitment is unchanged.
Challenges, CRW : After the challenge of ’P’, the statement ’P’ is included in the hearer’s
commitment; the statement ’P’ is not included in the speaker’s commitment; and the challenge
’Why P?’ is included in the speaker’s commitment.
Questions and Resolution demands, CRQ and CRR: These locutions do not themselves
affect commitment.
Initial Commitment, CR0: The initial commitment of each participant is null.

Rules Of Dialogue
RF orm: Each participant contributes a locution at a time, in turn; and each locution must be
either a statement, or the withdrawal, question, challenge or resolution demand of a statement.
RRepstat: No statement may occur if it is a commitment of both speaker and hearer at that
stage.
RImcon: A conditional whose consequent is an immediate consequence of its antecedent must
not be withdrawn.
RQuest: After ’Is it the case that P?’, the next event must be either ’P’, ’Not P’ or ’No
commitment P’.
RLogCall: A conditional whose consequent is an immediate consequence of its antecedent must
not be challenged. RChall: After ’Why P?’, the next event must be either;

1. ’No commitment P’; or
2. The resolution demand of an immediate consequence conditional whose consequent

is ’P’ and whose antecedent is a conjunction of statements to which the challenger is committed;
or

3. A statement not under challenge with respect to its speaker (i.e. a statement to
whose challenge its hearer is not committed).
RResolve: The resolution demand of ’P’ can occur only if either;

1. ’P’ is a conjunction of statements which are immediately inconsistent and to all of
which its hearer is committed; or

2. ’P’ is of the form ’If Q then R’, and ’Q’ is a conjunction of statements to all of
which its hearer is committed; and ’R’ is an immediate consequence of ’Q’; and the previous
event was either ’No commitment R’ or ’Why R?’.
RResolution: After ’Resolve whether P’, the next event must be either;

1. The withdrawal of one of the conjuncts of ’P’; or
2. The withdrawal of one of the conjuncts of the antecedent of ’P’; or
3. The consequent of ’P’.

2.2 Araucaria and the Argumentation Markup Language

Araucaria is an application used to mark up and analyse monologic argument
based on the Argumentation Markup Language (AML) which is formulated in
XML. The syntax of AML is specified in a Document Type Definition (DTD)
which imposes structural constraints on the form of valid AML documents. AML
was primarily produced for use in the Araucaria tool but has subsequently been
adopted in other contexts such as within MAgtALO. AML is used to structure
the internal knowledge of an agent such that natural language statements are
related using argument theoretic concepts. This allows an agent to easily retrieve
a supporting statement to use to defends its position if that position comes
under attack. The benefit of adopting AML as the internal representation of
agent knowledge is that Araucaria can be used as a graphical tool to construct

79

the agents knowledge by marking up existing natural language texts. Such an
approach was used to provide initial agent knowledge so that MAgtALO agents
could represent the views held by two prominent contributors to the ID card
debate as garnered from their public statements on the subject.

3 The MAgtALO Architecture

MAgtALO consists of a multiagent system back-end and an AJAX-based web
interface front-end. The web interface uses client side javascript to ensure that a
responsive user interface is provided to the end-user. The interface is served from
an Apache web server, MySQL database, and hypertext pre-processor (PHP) ap-
plication stack running on a FreeBSD server. The multiagent system back-end
uses the Jackdaw University Development Environment (JUDE) developed by
Calico Jack Ltd [7]. JUDE is a Java based, lightweight, flexible and industrial
strength agent development platform that takes a modular approach to agent
development. Individual agents consist of a standard core module, provided by
the agent framework, which is extended via dynamically loadable modules to
provide domain specific capabilities. When a dialogue commences a number of
agents are loaded to represent the various participants. Each agent loads a mod-
ule which provides the capabilities required of an agent to act in the MAgtALO
domain, e.g. respond to the users questions, interject when conflicting statements
are made and defend its own position when attacked. The connection between
the web interface and the agent system is achieved using a proxy web server
agent which is provided as standard in the JUDE distribution. The proxy agent
communicates HTTP traffic over a nominated port and routes messages from
the web interface to the appropriate recipient agent. Similarly outgoing messages
from the individual agents to the user are routed via the proxy agent to the web
interface where they are displayed.

The key aspects of the MAgtALO system are representation of differing points
of view within a specific topic, the capability for the user to engage in dialogue,
according to a dialectical game protocol, with a number of agents and explore
those differing points of view, and the ability to extend the system and provide
new data for the system to use merely through interacting with the existing
system. These aspects are explored in more depth in the following sections.

3.1 Points of View

MAgtALO uses agents in a multi-agent system to represent the views of partici-
pants. Pre-existing arguments can be analysed for their argumentative structure
using tools like Araucaria [13]. The Argumentation Research Group at Dundee
have conducted large scale analyses which are available in an online corpus (at
araucaria.computing.dundee.ac.uk). The arguments in this corpus are stored us-
ing AML, the XML-based Argument Markup Language, and can easily be read
into data structures. In this way, an agent can have its beliefs automatically

80

populated with propositions that correspond to real, analysed, natural text. In
the same way, an agent can automatically acquire the argumentative relations
between those propositions, as they are represented in the AML source analyses.

By taking several corpus arguments that are in the same domain, but that have
been articulated by different authors, it is possible to have multiple agents storing
– or “representing” – the points of view expressed in those different arguments.
Of course, if multiple arguments are taken from the corpus and used to populate
the beliefs of multiple agents, there is the risk that two arguments make the
same (or almost the same) claim using different text. There is no reliable way
to process natural language to identify such correspondences, so the MAgtALO
team currently mark them manually where they arise. In this way, agents may
end up with arguments that have overlapping sets of premises or conclusions.

Fig. 1. The main MAgtALO interface

With a multi-agent system populated by agents representing sets of arguments
of specific authors, it becomes possible to interact with the data in interesting
ways. The interface provides an indication of which points of view are repre-
sented. (The running example shown in the figures concerns a current debate

81

in the UK regarding the issue of identity cards. Two prominent contributors to
the debate are Martin Linton, Labour MP for Battersea, and John Wadham,
director of the lobby and campaign group Liberty. Some of the recent arguments
of these two protagonists have been analysed and loaded into two agents in the
system.) MAgtALO uses the metaphor of a meeting, and provides the user with
the privileged position of chair. The user can ask individual agents for argu-
ments pro or con a given claim, or can ask one agent to attack the arguments of
another, or can ask whether an agent concurs with a claim, and so on. The user
is thus responsible for the direction of the virtual discussion modulo the rules of
engagement for arguments in meetings - i.e. the dialogue protocol.

Turn User Statement

1 System New discussion started! With the point “Identity cards are a bad idea”
2 User “I agree. They will undermine civil liberties”
3 John Wadham “Yes, I agree. The real target is the people whom the home office has

lost”
4 User “Why do you think the current point is true John?”
5 John Wadham “It will be black people and those from ethnic minorities who will find

that they need to show their card most often”
6 Martin Linton “No, I don’t agree. If you are saying the police might discriminate

against black people (even though it is illegal), that is a serious problem
that needs to be tackled. But should not stop us having ID cards”

7 User “I’d like to go back to the point that was made earlier... Identity cards
are a bad idea”

8 User “Do you agree with the current point Martin?”
9 Martin Linton “No, I don’t agree. They will not undermine civil liberties”
10 User “No, I don’t agree. Storing potentially vast amounts of sensitive data

about every citizen in one place presents danges”

Fig. 2. An example dialogue between a user and two MAgtALO agents, one repre-
senting John Wadham of Liberty, and the other representing the Labour MP Martin
Linton

3.2 Dialogue

One aim of MAgtALO is to enable the participants to engage in a discussion
rather than an interrogation. This means that the protocol by which the players
interact must allow for more sophisticated behaviours than just questioning the
other players and thereby exploring a knowledge base. Each player must be
able to interject with their own opinions, especially when something is said
with which they disagree. To enable this kind of behaviour a simple dialogue
game protocol was developed to govern the kinds of things that the players
can say at each point in the dialogue. This protocol has been developed to
ensure that each participant is fairly represented and that individual standpoints

82

can be investigated, whilst ensuring that the burden on the human participant
does not become onerous. (Although there are many techniques and theories
available in argumentation theory, rhetoric, and the communication sciences for
explaining and structuring exchanges of this sort [4], dialogue games provide the
right mix of abstraction from linguistic content and constraint on the role that
such content plays dialectically. The abstraction is vital to obviate the need for
natural language processing; the constraint is necessary to connect and structure
the propositional content).

Dialogues begin from a fixed initial topic, for example, “identity cards are a bad
idea” which is illustrated in turn 1 of figure 2. This topic does not necessarily
represent any given participant’s position but serves as the focus for the dialogue.
Once the initial topic has been selected, the user is presented with the option to
agree, disagree, or to find out where the other agents stand with respect to it.
If the user selects either to agree or disagree with the initial point then they are
invited to support their position with a reason such as that “they will undermine
civil liberties”. In figure 2 the user has opted to indicate their agreement with
the initial point.

Although the user is nominally in control of the dialogue, agents may automat-
ically interject after a statement is made if the agent has a sufficiently strong
desire to speak regarding that statement. The function that currently calcu-
lates desire-to-speak is simple: it is the difference between the number of points
in support and the number of points against the statement within an agent’s
knowledge base. If the value is around zero then the agent has mixed feelings
regarding the point. If the value is greater (or less) than zero, then the agent
has strong feelings for (or against) the point. Each agent has a threshold value
which enables the strength of feeling for a given point to be determined indi-
vidually. If the threshold is exceeded then the agent will automatically express
its viewpoint in the dialogue at that point. Though it is possible to imagine
more complex desire-to-speak functions, we have found that even such a sim-
ple mechanism provides engaging behaviour with appropriate threshold values.
(Notice that there is a strong relationship between the desire-to-speak function
and argument aggregation functions. Fox and Das [5] have demonstrated that
very simple aggregation functions are often all that is required for appropriate
automated reasoning in many situations). Automatic interjection enables the
dialogue to proceed with a more natural rhythm. Without such a facility either
the user must ask each agent for their view at each turn, or else the agents must
all respond to each statement that the other agents and the user make. In ei-
ther case the resulting dialogue seems artificial and stilted. Though sensitive to
the threshold settings, automatic interjection can make the dialogue seem much
more natural. This is illustrated in figure 2 in which the agent associated with
John Wadham interjects with “Yes, I agree. The real target is the people whom
the home office has lost” after the user has agreed with the initial point. This
indicates that John Wadham has a strong desire to speak in agreement with the
last statement made by the user.

83

Fig. 3. Dialogical interaction in MAgtALO

84

Once an agent has interjected, the dialogue game allows the user to either
agree or disagree with the current point, the last point that was made during the
interjection, or to question the agent that made the point to explore that agent’s
position. This can be as simple as asking, Why?, in order to get underlying
reasons and so expose the basis for the agent’s position. If the agent’s point
failed to persuade the user, further justification can be solicited. The focus of
a dialogue generally follows the last point that was made, but by asking for
further reasons the user is switching focus back to an earlier point to get extra,
independent support for the point. This process of focus switching allows the
user to return to any earlier point in the dialogue, simply by selecting the new
focus-point from the dialogue transcript displayed on screen. Such a switch of
focus is illustrated in turn 7 of the dialogue in figure 2 whereby the user indicates
that they wish to return to an earlier point. In this case the earlier point is the
initial point of the dialogue and the user further indicates that they wish to
explore Martin Linton’s position. The result of such focus switching is that the
user is able to explore new threads of reasoning and expose different arguments
for and against each point made rather than being locked into a particular path
through the dialogue. Again this is an example of how the protocol enables a
natural rhythm to be maintained in which, when the user is dissatisfied with the
current position, they can return to the point of contention and explore it some
more.

MAgtALO is not in the business of calculating a ”solution” to a debate, or of
evaluating points of view, or of persuading a user that a particular viewpoint is
superior. Though such things may be interesting to investigate (as is hinted at,
at least in part, in section 5), they are peripheral to the main focus, which is
squarely upon providing a rich, flexible, but intuitive interface by which online
users can interact with and explore complex debates, thereby gaining a deeper
and more sophisticated understanding of the topic. One rather more direct addi-
tional benefit of using the theory of dialogue games as a foundation upon which
to build such an interface is that the process of extracting structured knowledge
from the user is made significantly easier.

3.3 Knowledge Elicitation

The process of uncovering a user’s position on a given topic is a form of knowl-
edge elicitation - what [15] refer to as the maieutic function of dialogue. MAg-
tALO uses a simple dialogue game protocol to expose this knowledge and to
record it into the system in a structured fashion. Use of a dialogue game en-
ables the underlying argumentative structure of the dialogue to be captured.
This is because each statement is uttered in relation to some earlier statement.
For example, offering justification for agreement with a position corresponds to
an inference being drawn between the two points, one giving a conclusion and
the other giving a reason in support of the conclusion. The use of a dialogue
game protocol therefore helps to ensure that each new entry into the dialogue is

85

dialogically relevant. Such dialogical relevance is important to enable new infor-
mation to be recorded for reuse in future dialogues. This approach to knowledge
elicitation enables the user to express their position and underlying reasons,
whilst avoiding the feeling that there is an interrogation occuring. The dialogues
are not heavily weighted towards any given participant because any agent may
interject at any point if their interjection threshold is exceeded. Meanwhile the
user remains in control and moves the focus back and forth, following a natural
path through the dialogue. These two elements help to ensure that the resulting
dialogue feels natural to the user and thereby gives the user some incentive to
continue with the discussion.

Fig. 4. Knowledge elicitation in MAgtALO

This argument-based knowledge elicitation has some interesting aspects. The
amount of new, typed user input is minimised by allowing the user to select
from previously recorded statements first, then allowing the user to type in new
statements only if there is nothing appropriate already recorded. In the dialogue
illustrated in figure 2 the user’s views are represented by existing statements in
the system until turn 10 at which point the user introduces a new statement as a
reason for their disagreement. The benefit of this approach, as well as maintain-

86

ing user interest by minimising typing, is that existing statements are reused,
possibly in new ways so connections can be made between different threads of
argument on a topic. Additionally, this approach avoids the need for natural
language processing as propositional statements are recorded in their entirety.
When statements are reused in new ways it is because the user has linked the
statement to some point expressed within a dialogue. Rich, structured knowl-
edge is thus accumulated through a lightweight, naturalistic interaction with
the user. The knowledge collated during any given dialogue represents a user’s
position on the topic of the dialogue. This knowledge can then be reused in
subsequent dialogues to provide the knowledge for a new agent representing the
last user. Therefore each time a user engages in a dialogue within MAgtALO,
there is a structured expansion of the knowledge base, which increases the num-
ber of agents who can potentially take part in future dialogues, as well as also
increasing the size of the pool of statements from which the next user can select.

4 Argument Ontology

Although the use of AML has been widespread due to the popularity of Arau-
caria, there has not been a single shared, agreed notation for representing ar-
gumentation and arguments and this deficiency has been a major barrier in
the deployment of practical argumentation systems. The Argument Interchange
Format (AIF) [3] is a draft specification for representing information about ar-
guments and exchanging it between argumentation tools and agent-based appli-
cations. Adoption of the AIF as the format for representing arguments within
individual MAgtALO agents, and as a means to exchange information between
MAgtALO installations has a number of benefits. Primarily it enables new on-
line argumentation tools such as ArgDF [12] to be used as source of analysed
argument with which to populate the agent’s knowledge bases. Additionally, the
AIF can be used to distribute argument data between MAgtALO installations so
that a user interacting with one instance of MAgtALO, and thereby expanding
the available pool of arguments through interactive knowledge elicitation, also
provides data that further users interacting with other instances of MAgtALO
can make use of. Finally, each dialogue, conceived as a sequence of utterances
made by the user and agents in turn, can be recorded, shared, and analysed,
both within MAgtALO and with other argument analysis tools.

4.1 The Argument Interchange Format

There have been a number of attempts to construct argument mark-up lan-
guages. For example two particularly relevant examples are, AML discussed in
section 2.2 and used in the Araucaria system, and ClaiMaker which provides a
suite of tools for publishing and contesting ideas and arguments. However there
are limitations associated with these approaches which motivated the need to for
a common interchange format. A number of limitations of existing approaches
were identified [3]. Firstly, that each language was designed primarily to be used

87

by particular software tools, such as Araucaria using AML, rather than facili-
tating interoperability with other tools. A second limitation is that the existing
languages were developed to support graphical in which the user graphically con-
structs diagrams showing the argumentative linkages between natural language
sentences.

The AIF was developed to overcome these limitations with the following pri-
mary aims; firstly to facilitate the development of multiagent systems capable of
argumentation-absed reasoning and interactions; and secondly to facilitate data
interchange between tools that support argument manipulation, visualisation,
and utilisation. Two aspects of the AIF that are of particular importance in
relation to the MAgtALO system are its use in the representation of monologic
argument and its use in the representation of dialogic argument.

4.2 Monologic Argument Representation

The primary mode of use of the AIF is to represent monologic arguments. In
this mode, argument entities are represented as nodes in a directed graph (di-
graph) informally known as an argument network. Two primary types of node are
supported, information nodes (I-nodes), which relate to argument content and
are used to represent claims, and scheme application nodes (S-nodes), which are
used to represent domain independent, stereotypical patterns of reasoning. Three
sub-categories of S-node are currently supported, the rule application node (RA-
node), the preference application node (PA-node), and the conflict application
node (CA-node). The notion of support in an argument is supported in an AIF
argumentation network using edges. If an edge runs from node A to node B
then it is said that A supports B. Consequently an argument network can be
constructed by connecting the requisite node types according to the specified
support semantics of AIF.

4.3 Dialogic Argument Representation

MAgtALO does not currently make a record of the actual dialogue that occurs
between the user and the agents, although any new statements entered by the
user, or inferences drawn, are recorded into the knowledge base available in
subsequent dialogues. It would of course be useful to record the dialogues that
occur, so that the user make a record of their interaction, and so that analysis
can be made of the ways that users interact with the topic under discussion. Such
an ability could be incorporated in MAgtALO using the AIF both to record the
entire dialogue and as the format for exchange of messages within a dialogue
between the communicating agents. An extension to the AIF that supports such
an application is due to Modgil and McGinnis [11] and proposes the introduction
of protocol interaction application (PIA-nodes) to account for dialogue specific
requirements along with adoption the Lightweight Coordination Calculus (LCC)
[14] as a means to specify a protocol language.

88

5 Challenges & Directions

It has been suggested that argument provides a more intuitive and accessible
means of presenting and assimilating complex data [5], and that structured argu-
mentation can be applied to discussions of complex domains involving real risks
[9]. In MAgtALO, both monologic argument structures and dialogic argument
protocols are used to give the user intuitive control over navigation of a complex
disagreement space. Presenting and organising material explicitly as arguments
should mean that users find it easier to understand the relations between the
various positions in comparison to sources which have a more discursive style
(such as newspaper reports). One would expect the same to be true for other
argument-based systems such as debatapedia. But providing an intuitive in-
teraction metaphor with which the user is expected to be familiar (chairing a
meeting), and allowing the user active participation in both directing the discus-
sion and contributing to it, it is further expected that MAgtALO should offer
an appreciable benefit over formats that allow little or no active participation
with the material (such as reports from the traditional media) or that offer a
weak, non-argumentative interaction model (such as or wiki pages and discus-
sion boards). Although informal, small-scale evaluations conducted at Dundee
suggest that this benefit is substantial, larger scale investigations are required.
Testing these hypotheses on specific user groups is a key step for guiding both
the MAgtALO project specifically, and the online argumentation research area
in general.

From a technical perspective there are two key advances in the underlying
representations that structure MAgtALO’s immediate development. First is to
allow the system to use a variety of different dialogue protocols, so that such
protocols might be explored and evaluated, using both the representational style
and evaluative approach of [16]. Second is to replace the existing machinery for
processing arguments based on the Araucaria representation format AML, and
instead equip agents in the system with the ability to import from, and export
to, the argument interchange format [3]. The AIF represents a nascent standard
for argument representation: by extending MAgtALO to support the AIF, it
becomes one of a constellation of systems that can offer an interface to existing
argument resources, and provide a means of creating new such resources. By
moving to the AIF, it will also become easier to make use of argument compu-
tation services that are now under development, for connecting the linguistic,
textual analysis, elicitation and interaction with underlying formal models and
semantics. It will, for example, become feasible to compute acceptability of each
agent’s position according to one or more argumentation semantics [2], and pro-
vide this information to users as the dialogue progresses.

6 Conclusions

MAgtALO already represents the first example of an implemented online system
that uses a closely specified argument-based dialogue protocol combined with a

89

rich monologic argument representation language to provide a tool for intuitive
user exploration of a space of disagreement. As an additional benefit of the
approach, it is possible to expand the argument resources through knowledge
elicitation that is structured by the argument dialogue protocol. The continuing
aim of the research is to use the advances in the theory of argumentation to push
the practice of argumentation technology in providing tools and interfaces that
have wide appeal.

7 Acknowledgements

A video which demonstrates MAgtALO in action and a live demonstration
are of the system, are available online at arg.computing.dundee.ac.uk. The im-
plementation work on MAgtALO was carried out by John Lawrence, an MSc
student in the School of Computing during 2006. John can be contacted at
mail@johnlawrence.net

References

1. K. Atkinson, T. Bench-Capon, and P. McBurney. Parmenides: Facilitating demo-
cratic debate. In Lecture Notes in Computer Science, pages 313–316. Springer
Berlin / Heidelberg, 2004.

2. M. Caminada. Semi-stable semantics. In P.E. Dunne and T.J.M. Bench-Capon,
editors, Computational Models of Argument (Proceedings of COMMA 2006), pages
121–132. IOS Press, 2006.

3. C. Chesnevar, J. McGinnis, S. Modgil, I. Rahwan, C. Reed, G. Simari, M. South,
G. Vreeswijk, and S. Willmott. Towards an argument interchange format. Knowl-
edge Engineering Review, 21(4):293–316, 2006.

4. F. H. van Eemeren, R. Grootendorst, and F. Snoeck Henkemans. Fundamentals
Of Argumentation Theory. Lawrence Erlbaum Associates, 1996.

5. John Fox and Subrata Das. A unified framework for hypothetical and practical rea-
soning (2): Lessons from medical applications. In Dov M. Gabbay and Hans Jurgen
Ohlbach, editors, Practical Reasoning: Proceedings of the International Conference
on Formal and Applied Practial Reasoning (FAPR-96), LNAI 1085. Springer, 1996.

6. Thomas F. Gordon and Nikos I. Karacapilidis. The zeno argumentation framework.
In International Conference on Artificial Intelligence and Law (ICAIL-97), pages
10–18, 1997.

7. Calico Jack Ltd. http://www.calicojack.co.uk, 2005.
8. J. D. Mackenzie. Question begging in non-cumulative systems. Journal Of Philo-

sophical Logic, 8:117–133, 1979.
9. P. McBurney and S. Parsons. Risk agoras: Using dialectical argumentation to

debate risk. Risk Management, 2(2):17–27, 2000.
10. P. McBurney and S. Parsons. Agent ludens: Games for agent dialogues. In Game-

Theoretic and Decision-Theoretic Agents (GTDT 2001): Proceedings of the 2001
AAAI Spring Symposium, 2001.

11. S. Modgil and J. McGinnis. Towards characterising argumentation based dialogue
in the argument interchange format. In Proceedings of the Fourth International
Workshop on Argumentation in Multi-Agent Systems (ArgMAS 2007), 2007.

90

12. I. Rahwan, F. Zablith, and C. Reed. Laying the foundations for a world wide
argument web. Artificial Intelligence, 2007.

13. C. Reed and G. W. A. Rowe. Araucaria: Software for argument analysis, dia-
gramming and representation. International Journal of AI Tools, 14(3-4):961–980,
2004.

14. D. Robertson. Multi-agent coordination as distributed logic programming. In
Proceedings of the International Conference on Logic Programming, 2004.

15. D. N. Walton and E. C. W. Krabbe. Commitment in Dialogue. SUNY series in
Logic and Language. State University of New York Press, 1995.

16. S. Wells and C. Reed. A drosophila for computational dialectics. In Proceedings
of the International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS 2005), 2005.

91

Enhancing Communication inside Multi-Agent Systems?

An Approach based on Alignment via Upper Ontologies

Viviana Mascardi†, Paolo Rosso‡, and Valentina Cordì†

†DISI, Università degli Studi di Genova, Via Dodecaneso 35, 16146, Genova, Italy
E-mail: mascardi@disi.unige.it, valentina.cordi@gmail.com

‡DSIC, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia Spain
E-mail: prosso@dsic.upv.es

Abstract. This paper deals with a theoretical issue related to multi-agent system
development and deployment, namely the need of a mechanism for aligning on-
tologies owned by agents, in order to allow them to communicate in a profitable
way. Our approach exploits upper ontologies, i.e., ontologies which describe very
general concepts that are the same across all domains, as a “lingua franca” among
agents. This approach may overcome some problems that arise in various real sce-
narios, such as the impossibility for (or the lack of will of) an agent to disclose
its own entire ontology to another agent, despite the need to communicate with
it. In this paper we propose a comparison of seven existing upper ontologies, and
an algorithm for aligning any two (or more) ontologies by exploiting an upper
ontology as a bridge.

1 Introduction

In a paper that dates back to 2001, James A. Hendler predicted that

in the next few years virtually every company, university, government agency
or ad hoc interest group will want their web resources linked to ontological
content - because of the many powerful tools that will be available for using it.
[...] On top of this infrastructure, agent-based computing [...] will be a primary
means of computation in the not-so-distant future. [9]

Hendler’s vision has found a partial realisation: ontologies, web services, and the com-
bination of both, i.e., semantic web services, are more and more exploited to share
knowledge within and outside the boundaries of companies and other organisations. In-
telligent software agents are recognised by both researchers and practitioners from the
industry as one of the most suitable means for mediating among the heterogeneity of
applications working within open, distributed, concurrent systems, and for this reason
find application in many commercial projects [14]. Proposals of integrating intelligent
agents, web services, and ontologies, thus realising “agent-based semantic web ser-
vices”, are already around [6,20,11]. However, although it is probably true that almost
every company, university, government agency would want their web resources linked
? This work was partially supported by the research projects TIN2006-15265-C06-04 and “In-

iziativa Software” CINI-FINMECCANICA.

92

to ontological content, and made available by exploiting an infrastructure based on soft-
ware agents, it is also true that only a small subset of them has already implemented
this vision.

One of the reasons for this delay with respect to Hendler’s predictions, is that linking
the organisation’s web resources, that in most cases will contain knowledge represented
by some domain dependent, ad-hoc ontology OOrg , to some reference ontological con-
tent ORef , requires to find mappings between the concepts of OOrg and ORef . Without
an automatic, agent-driven means for finding these mappings, linking web resources
to ontological contents becomes a very difficult and time-consuming activity, not only
because of the time and human resources needed for finding them for the first time, but
also for maintaining them, as the organisation’s ontology OOrg will evolve during time,
and this will require continuous updates to the mappings with ORef .

Finding formal statements that assert the semantic relation between two entities be-
longing to different ontologies (namely, finding an alignment of the two ontologies,
[4,2]) is thus a key problem in many scenarios such as enterprise information integra-
tion, querying and indexing the deep web, merchant catalog mapping, etc. [8]. In all
of these scenarios, one organisation wants to align its own entire ontology O with the
entire ontology O′ of another organisation. This is the most classical instance of the
alignment problem, that requires that both ontologies O and O′ are given in input to
the alignment algorithm, and that are entirely available. The two organisations whose
ontologies are involved in the alignment process, must have neither restrictions due to
privacy issues, nor restrictions due to limited space or time resources that prevent them
from sharing their whole ontology. There are also scenarios, however, where two or-
ganisations might want to perform an alignment of their ontologies in order to be able
to interact, but either limiting the reciprocal disclosure of the ontologies to the mini-
mum required for understanding each other, or disclosing portions of the ontologies in
an incremental way. These scenarios are almost common inside multi-agent systems.
In this paper, we face a theoretical issue strongly relevant for developing and deploy-
ing multi-agent systems (MASs) in the above scenarios: that of finding and automatic
and incremental alignment of the agents’ ontologies by exploiting “Upper Ontologies”,
namely ontologies which describes very general concepts that are the same across all
domains.

The paper is organised in the following way: Section 2 describes two scenarios that
motivate our approach, Section 3 provides some background on upper ontologies and
ontology alignment, Section 4 discusses the algorithm that we propose, and Section 5
draws some conclusions and outlines the future directions of our work.

2 Motivation

In many applicative scenarios, the alignment of two ontologies may be performed di-
rectly, namely without any other ontology serving as a bridge, and offline, namely with
both ontologies entirely known in advance. We will refer to this scenario as the “classi-
cal” one. However, there are situations where the assumptions made in the “classical”
scenario, do not hold. Before considering two of these situations, we observe that on-
tologies may be developed and owned by a single human developer, by an institution

93

like a company, or by a software agent equipped with knowledge and algorithms suit-
able for managing an ontology in a (semi-)automatic way. In this paper, we attribute the
capability of developing and possessing an ontology to human beings, software agents,
and institutions indifferently. Also, coherently with the “strong definition” of agents
[22], we attribute intentions, goals, and beliefs to them.
Personalised content provider. In this scenario, a provider of personalised content
(news, commercial advertisements, etc.) is a software agent that provides content to
the agents that access it, be them human or software, in a personalised way. The most
accepted personalisation approach is the one where the user’s interests and habits are
learnt just by watching his/her behaviour, without any explicit request apart from re-
quest on feedback on the provided content. The MAS composed by the personalised
content provider agent (PCPA) and its users is highly open and dynamic.

The PCPA is strongly motivated to make a good job because it usually has eco-
nomic advantages in increasing the number of users that access its services. Also, it
is motivated to make its users faithful to it, since a user that accesses the service on a
regular basis can be better profiled and the PCPA can deliver most appropriate contents
to him/her. The user will then be more satisfied with the offered service, and will tend
to go on using it. As far as ontologies are concerned, it is very likely that the PCPA
possesses a private ontology OPCPA for categorising the contents that it manages and
delivers.

On the other hand, the user does not want to spend time in training the PCPA,
and s/he probably does not event want to reveal extra information to it, besides that
concerning his/her interests which can be extracted from the queries s/he poses to the
PCPA. The user may or may not have an explicit ontology defining the concepts that
appear in the queries made to the PCPA. In case s/he (or it, if we consider software
users acting on behalf of humans) has an ontology, s/he might not want to share it with
the PCPA.

– Alignment problem. The alignment problem in this scenario is asymmetric: the
PCPA would like to know all the ontologies that its users use, and align them with
its own in order to provide the best answers to the users’ queries. Instead, most
of the users either do not have an explicit ontology (this means that they do have
a reference ontology, but it is “hard-wired” inside their knowledge, or inside their
code, or inside their brain), or they have it but are not interested in sharing it with
the PCPA.

– Proposed solution: incremental alignment. What the PCPA may do to meet its
objectives, is to consider the concepts that appear in queries issued by User as a
subset of the concepts of User’s ontology, OUser. The PCPA can make a partial
alignment of the sub-ontology composed only by those concepts (without any re-
lation) and OPCPA, use this partial alignment to provide answers, and refine it as
soon as new queries from User (and thus, new concepts of OUser) arrive. In other
words, the PCPA may perform a partial, incremental, on-line alignment between
an (unknown and undisclosed) ontology OUser and OPCPA. The alignment is par-
tial because only a portion of OUser can be elicited from the users’s queries. It is
incremental, because as new portions of OUser arrive, the alignment is updated and

94

enriched with new information. Finally, it is an on-line process, made of successive
refinements performed at any interaction between PCPA and User.

Virtual Enterprises. A virtual enterprise (VE) is a temporary consortium of autono-
mous, diverse and possibly geographically dispersed organizations that pool their re-
sources to meet short-term objectives and exploit fast-changing market trends [3].

Due to the autonomy, distribution and heterogeneity of the enterprises belonging
to a VE, it can be suitably conceptualised as a MAS. This MAS is neither open nor
dynamic since the enterprises belonging to it are known in advance. It is reasonable to
assume that, at least within the information and communication technologies domain,
most or all of them possess a private ontology and are strongly motivated in sharing and
aligning it with the ontologies of the other enterprises in the VE in order to improve the
benefits of the VE as a whole.

This scenario would be the right one for adopting a classical approach to alignment,
if there were no privacy restrictions on the ontologies of each individual enterprise.
Unfortunately, this is not often the case. What happens in the real case, is that the enter-
prises want and need to exchange useful information among them, but they also want
and need to protect (part of) their enterprise information, represented by the enterprise
ontology. In fact, the VE is just a temporary consortium where each component also
runs its own business, often in concurrence with other enterprises within the same VE.

The disclosure of the entire ontology to all the partners belonging to the VE, has
economic and commercial advantages for the VE, but may be a serious disadvantage
for the single enterprise.

– Alignment problem. The alignment problem in this scenario is symmetric: all the
enterprises would like to have the means for interacting with each other in the best
possible way, but they also would like to avoid disclosing their own ontologies.

– Proposed solution: alignment via upper ontologies. The solution to this instance
of the alignment problem may come from the use of upper ontologies: each en-
terprise may align its own ontology with an upper ontology upon which all the
enterprises agree. Then, each enterprise becomes able to communicate with any
other enterprise by means of the upper ontology. This gives two advantages to both
the individual enterprises and the VE:
1. no enterprise has to disclose its own ontology: it may only disclose the corre-

sponding portion of the upper ontology obtained by alignment;
2. if there are n enterprises within the VE, the alignments required to allow any

enterprise to interact with any other are only n (one alignment between each
private ontology and the upper ontology), instead of the n2 that would be re-
quired if any enterprise had to align its own ontology with all the other ones.

The analysis of the state of the art discussed in Section 3 shows that there are very
few proposals of performing an incremental alignment of ontologies, and no imple-
mented systems that exploit upper ontologies in the alignment process. However, the
two motivating scenarios that we have identified, demonstrate that both incremental and
upper ontology-based approaches would be extremely useful in many agent systems.

95

3 Background

In this section we introduce upper ontologies and a systematic comparison of seven of
them, and we discuss the state-of-the-art of alignment techniques. To the best of our
knowledge, there are no comparisons that consider all the upper ontologies discussed
in Section 3.1. Thus, this section represents an original contribution of our work. For
space constraints, we only report the synthesis of our comparison in form of tables.
More information can be found in [13].

3.1 Upper Ontologies

Upper ontologies are quickly becoming a key technology for integrating heterogeneous
knowledge coming from different sources. In fact, they may be used by different par-
ties involved in a knowledge integration and exchange process as a reference, common
model of the reality.

The definition of upper ontology (also named top-level ontology, or foundation on-
tology) given by Wikipedia [21] is “an attempt to create an ontology which describes
very general concepts that are the same across all domains. The aim is to have a large
number on ontologies accessible under this upper ontology”.

In this section, we review the state-of-the-art in the field of upper ontologies by
comparing seven of them based on dimension, implementation language(s), modularity,
alignment with the WordNet lexical resource, and licensing. These software engineering
criteria may prove useful for the developer of a knowledge-based system that has to
choose the most suitable upper ontology for his/her needs, among a set of existing
ones. The choice of the upper ontologies we describe and compare, namely BFO, Cyc,
DOLCE, GFO, PROTON, Sowa’s ontology, and SUMO, is based on how much they are
visible and used inside the research community. In fact we have discussed all the upper
ontologies referenced by Wikipedia, apart from WordNet that we consider a lexical
resource rather than an upper ontology, and from the Global Justice XML Data and
National Information Exchange Models, that address the specific application domain of
justice and public safety. Moreover, we have added PROTON and Sowa’s ontology to
those considered by Wikipedia.

The methodology followed to draw our comparison consisted in checking the exist-
ing literature, producing a first draft of the comparison based on the retrieved literature,
submitting it to the attention of the developers of all the seven upper ontologies under
comparison, and integrating the obtained answers and suggestions.

Table 1 provides a short description of the seven upper ontologies, while Tables 2
and 3 provide an handy way for comparing them from a software engineering viewpoint.
Few other comparisons among upper ontologies exist, and they just consider subsets
of the upper ontologies that we have treated in this section. Most of these existing
comparisons, such as Pease’s comparison of DOLCE and SUMO [16,17], Onto-Med’s
comparison of GFO, DOLCE, and Sowa’s ontology [10], and Grenon’s comparison of
DOLCE and BFO [7], take a philosophical perspective, and thus complement our work
that is much more application-oriented. MITRE’s comparison of SUMO, Upper Cyc,
and DOLCE [18], compares the three upper ontologies according to a subset of our
criteria.

96

BFO

BFO (http://www.ifomis.org/bfo) consists in two sub-ontologies: SNAP
– a series of snapshot ontologies (Oti), indexed by times – and SPAN – a single
videoscopic ontology (Ov). An Oti is an inventory of all entities existing at a time,
while an Ov is an inventory of all processes unfolding through time. Both types of
ontology serve as basis for a series of sub-ontologies, each of which can be conceived
as a window on a certain portion of reality at a given level of granularity. It finds
application mainly in the biomedical domain.

Cyc

The Cyc Knowledge Base KB (http://www.cyc.com/) is a formalised repre-
sentation of facts, rules of thumb, and heuristics for reasoning about the objects and
events of everyday life. The KB consists of terms and assertions which relate those
terms. These assertions include both simple ground assertions and rules. The Cyc KB
is divided into thousands of “microtheories” focused on a particular domain of knowl-
edge, a particular level of detail, a particular interval in time, etc. It finds application
in natural language processing, network risk assessment, terrorism management.

DOLCE

DOLCE (http://www.loa-cnr.it/DOLCE.html) captures the ontological
categories underlying natural language and human commonsense. According to
DOLCE, different entities can be co-located in the same space-time. DOLCE is an
“ontology of particulars”, i.e. an ontology of instances, rather than an ontology of
universals or properties. DOLCE-Lite+ (http://wiki.loa-cnr.it/index.
php/LoaWiki:Ontologies#Modules_of_the_DOLite.2B_Library)
encodes the basic DOLCE ontology into OWL-DL and adds eight pluggable
modules, including collections, social objects, plans, spatial and temporal relations,
to it. DOLCE is used for multilingual information retrieval, web-based systems and
services, e-learning.

GFO

GFO (http://www.onto-med.de/ontologies/gfo.html) includes
elaborations of categories like objects, processes, time and space, properties,
relations, roles, functions, facts, and situations. Work is in progress on an integration
with the notion of levels of reality in order to more appropriately capture entities in
the material, mental, and social areas. It is used in the biomedical domain.

PROTON

PROTON (PROTo ONtology, http://proton.semanticweb.org/) is a ba-
sic upper-level ontology providing coverage of the general concepts necessary for a
wide range of tasks. The design principles are (i) domain-independence; (ii) light-
weight logical definitions; (iii) consistence with popular standards; (iv) good cover-
age of named entities and concrete domains (i.e., people, organizations, locations,
numbers, dates, addresses). It is used for semantic annotation, knowledge manage-
ment systems in legal and telecomm. domains, business data ontology for semantic
web services.

Sowa’s

Sowa’s ontology (http://www.jfsowa.com/ontology/) is based on [19].
The basic categories and distinctions have been derived from a variety of sources
in logic, linguistics, philosophy, and artificial intelligence. Sowa’s ontology is not
based on a fixed hierarchy of categories, but on a framework of distinctions, from
which the hierarchy is generated automatically. For any particular application, the
categories are not defined by selecting an appropriate set of distinctions. No docu-
mented applications have been developed, but Sowa’s ontology inspired the creation
of many implemented upper ontologies.

SUMO

SUMO (http://www.ontologyportal.org/) and its domain ontologies
[15] form one of the largest formal public ontology in existence today. SUMO is
extended with many domain ontologies and a complete set of links to WordNet, and
is freely available. It finds application in linguistics, knowledge representation, rea-
soning.

Table 1. Short description of the upper ontologies

97

Developers Dimensions Language(s)

BFO Smith, Grenon, Stenzhorn,
Spear (IFOMIS)

36 classes related via the
is_a relation

OWL

Cyc Cycorp

About 300,000 concepts,
3,000,000 facts and rules,
15,000 relations (including
microtheories)

CycL, OWL

DOLCE Guarino and other re-
searchers of the LOA

About 100 concepts and
100 axioms

First Order Logic, KIF,
OWL

GFO The Onto-Med Research
Group

79 classes, 97 subclass-
relations, 67 properties

First Order Logic and KIF
(forthcoming); OWL

PROTON Ontotext Lab, Sirma
300 concepts and 100
properties

OWL Lite

Sowa’s Sowa
30 classes, 5 relationships,
30 axioms

First Order Modal Lan-
guage, KIF

SUMO Niles, Pease, and Menzel
20,000 terms and 60,000
axioms (including domain
ontologies)

SUO-KIF, OWL

Table 2. Comparison, Part I

Modularity Alignment with WordNet Licensing
BFO SNAP and SPAN modules Not supported Freely available

Cyc “Microtheory” modules
Mapped to about 12,000
WordNet synsets

Commercial product; Re-
searchCyc and OpenCyc
are freely available but are
more limited than the com-
mercial version

DOLCE
DOLCE is not divided into
modules, while DOLCE-
Lite+ is

Aligned with about 100
WordNet sysnsets

Freely available

GFO Abstract top level, abstract
core level, basic level

Not supported
Released under the modi-
fied BSD Licence

PROTON Three levels including four
modules

Not supported Freely available

Sowa’s Not divided into modules Not supported Freely available

SUMO
Divided into SUMO itself,
MILO, and domain ontolo-
gies

Mapped to all of WordNet
v2.1 by hand

Freely available

Table 3. Comparison, Part II

98

3.2 Ontology Alignment

In [2], an alignment is described as

“a set of mappings expressing the correspondence between two entities of dif-
ferent ontologies through their relation and a trust assessment. The relation
can be equivalence as well as specialisation/generalisation or any other kind
of relation. The trust assessment can be boolean as well as given by other mea-
sures (e.g., probabilistic or symbolic measures)”.

Intuitively, a mapping can be described as a 5-tuple < id, e, e′, n,R > where:

– id is a unique identifier of the given mapping element;
– e and e′ are the entities (e.g. tables, XML elements, properties, classes) of the first

and the second ontology respectively;
– n is a confidence measure (typically in the [0,1] range) holding for the correspon-

dence between the entities e and e′;
– R is a relation such as equivalence, more general, disjointness, overlapping, holding

between the entities e and e′.

In [5], ontology alignment approaches are classified into:

Local Methods — The main issue in aligning consists of finding to which entity or
expression in one ontology corresponds another one in the other ontology. Local
methods are the basic methods which enable to measure this correspondence at
a local level, i.e., only comparing one element with another and not working at
the global scale of ontologies. Very often, this amounts to measuring a pair-wise
similarity between entities (which can be as reduced as an equality predicate) and
computing the best match between them. Local methods exploit the definitions of
similarity and of distance. In [5] such definitions are provided, as well as a detailed
classification of local methods.

Global Methods — Once the local methods for determining the similarity are avail-
able, the alignment must be computed. This involves some kind of more global
treatments, including:

– aggregating the results of local methods in order to compute the similarity be-
tween compound entities;

– developing a strategy for computing these similarities in spite of cycles and
non linearity in the constraints governing similarities;

– organising the combination of various similarity algorithms;
– involving the user in the loop;
– finally extracting the alignments from the resulting similarity: indeed, differ-

ent alignments with different characteristics can be extracted from the same
similarity.

Since global methods are based upon local ones, in the following paragraph we
briefly discuss local methods.

99

Local Methods.

Definition 1. (Similarity). A similarity σ : O × O → R is a function from a pair of
entities to a real number expressing the similarity between two objects such that:

∀x, y ∈ O, σ(x, y) ≥ 0 (positiveness)
∀x ∈ O,∀y, z ∈ O, σ(x, x) ≥ σ(y, z) (maximality)

∀x, y ∈ O, σ(x, y) = σ(y, x) (symmetry)

The dissimilarity is the dual operation of the similarity.

Definition 2. (Distance). A distance (or metrics) δ : O × O → R is a dissimilarity
function satisfying the definiteness and triangular inequality:

∀x, y ∈ O, δ(x, y) = 0 iff x = y (definiteness)
∀x, y, z ∈ O, δ(x, y) + δ(y, z) ≥ δ(x, z) (triangular inequality)

A (dis)similarity is said to be normalised if it ranges over the unit interval of real num-
bers [0 1]. Local methods introduced in the following classification use normalised
measures.

1. Terminological methods compare strings. They can be applied to the name, the
label or the comments concerning entities in order to find those which are similar.
Terminological methods are further divided into string-based methods, that take
advantage of the structure of the string as a sequence of letter, and language-based
methods, that rely on using natural language processing (NLP) techniques to find
associations between instances of concepts or classes.

2. Structural methods compare the structure of the entities. This comparison may
either be a comparison of the internal structure of an entity (i.e., its attributes) or a
comparison of the entity with other entities to which it is related.

3. Extensional methods compare the extension of classes, i.e., the set of their in-
stances rather than their interpretation.

4. Semantic methods have model-theoretic semantics which is used to justify their
results, and thus they are deductive methods. Examples are propositional satisfia-
bility (SAT) and modal SAT techniques or description logic based techniques.

While the literature discusses many local and global “off-line” alignment methods,
very few attempts have been made to propose “incremental” alignment methods [1,12],
and none exploits upper ontologies for this purpose. The next section discusses our
algorithm for incremental alignment based on upper ontologies. Even if the algorithm
has not been implemented yet, our approach may be a preliminary contribution to a
research field that is still unexplored.

100

4 Algorithm

The algorithm that we propose is based on two functions, Align(O1, O2), where O1 and
O2 are two ontologies, and Merge(Al1, Al2), where Al1 and Al2 are two alignments.
Both functions return an alignment. The algorithm consists of three steps: the concepts
of the two ontologies to align are first “tagged” with concepts of a reference upper
ontology by exploiting the Align function (first two steps), and the two alignments
obtained in this way are merged. The two agents that want to align their ontologies
may exploit only the merged alignment, thus avoiding the disclosure of their private
ontologies, and this process may take place following incremental steps, for coping
with all those situations where one of the ontologies is not fully known in advance. We
consider alignment of ontologies based on the equivalence relation R, which is thus
dropped from the 5-tuple that represents the mapping element.

Align(O1, O2) just computes an alignment between O1 and O2 by exploiting one
(or a combination of) standard local method(s) among those introduced in Section 3.2.

Given two alignments Al1 = Align(O1, OBridge) and Al2 = Align(O2, OBridge),
Merge(Al1, Al2) computes the alignment Al between O1 and O2 starting from Al1 and
Al2. A mapping element 〈id, C1, C2, Conf〉 belongs to Al iff ∃ CBridge ∈ OBridge

such that 〈id1, C1, CBridge, Conf1〉 ∈ Al1, 〈id2, C2, CBridge, Conf2〉 ∈ Al2 and
Conf1 ∗ Conf2 ≥ Threshold, where Threshold is a configurable threshold.

Our algorithm consists of the following steps:

Al(O1,OBridge) Each concept C1 ∈ O1 is “tagged” with one or more concepts
{CBridge1 , ..., CBridgek

} ∈ OBridge by exploiting traditional mapping techniques
based on a combination of string comparison, natural language processing tech-
niques, and exploitation of linguistic resources such as common knowledge or do-
main specific thesauri. Namely, an alignment Al(O1, OBridge) between O1 and
OBridge is computed. The tagging is represented as a set of mapping elements
{〈id1, C1, CBridge1 , Conf1〉, ..., 〈idk, C1, CBridgek

, Confk〉}.
Al(O2,OBridge) In the same way, an alignment Al(O2, OBridge) between O2 and

OBridge is computed, resulting into a “tagging” of concepts of O2 with concepts of
OBridge.

Merge(Al1,Al2) The alignment between O1 and O2, namely Merge(O1, O2), is
computed.

This algorithm may be used in three different ways, depending on the usage sce-
nario and just skipping some of its steps:

Usage 1 - Classical way: This usage corresponds to the situation where two agents
Ag1 and Ag2 agree to share their ontologies O1 and O2, to give them in input to the
alignment function, and to take advantage of the computed output. Once both agents
know the computed alignment Align(O1, O2), they may communicate either using O1

as their reference ontology, or using O2, indifferently. In this case, only the first step of
the algorithm is performed, with O2 used instead of OBridge.

Usage 2 - Incremental way: This is the usage foreseen within the personalised con-
tent provider scenario. The PCPA Ag1 computes Al1 = Align(O1, OUpper), where

101

OUpper is an upper ontology; when Ag1 receives a message containing the concepts
{C21 , . . . , C2n

} ∈ O2 from the user agent Ag2, it interprets these concepts as a sub-
ontology O2small

of the implicit ontology O2 used by Ag2. O2small
is a degenerated

ontology, since it has only concepts with no relations among them. Although degener-
ated, this is the only ontology that the PCPA Ag1 may elicit from the user agent Ag2.
Ag1 may then call Al2 = Align(O2small

, OUpper) ∀C2i
, and merge the obtained par-

tial alignment Al2 with Al1 by calling the function Merge(Al1, Al2). As new messages
from the user agent Ag2 arrive, containing new concepts of the ontology used by Ag2,
the PCPA reiterates the computation of the alignment, and integrates the new alignment
with the previously obtained one by making a union of the tuples belonging to the old
and new alignments, just omitting those tuples that appear more than one time, with
different identifier and confidence. In this case, the tuple with the best confidence may
be kept, and the other one(s) may be skipped.

In this scenario, exploiting an upper ontology is very important for providing the
right content to the user agent. In fact, the user agent might require something that is
not included in the content provider’s ontology. To make a trivial example, the user
might look for content dealing with “marsupials”, and the content provider might only
possess the “mammal” concept in its ontology, with no sub-concepts. If the concepts
in the user’s message are directly aligned with those in the content provider’s on-
tology, the mapping between marsupial and mammal is lost, since there is no way
for the content provider to know what a marsupial is. Instead, if the reference upper
ontology contains the information that a marsupial is a mammal (like SUMO does,
http://ontology.teknowledge.com/sumo-1.36classes.pdf), a mapping be-
tween the marsupial concept belonging to the user agent’s ontology O2 and the mammal
concept belonging to the PCPA’s ontology O1, may be found with a confidence lower
than 1 (the two concepts are not equivalent).

Usage 3 - Upper ontology way: This is the usage foreseen within the Virtual Enterprise
scenario. All the agents belonging to the VE, agree to use one upper ontology OUpper

as their “lingua franca” for knowledge exchange. Each agent Ag having a private on-
tology O calls Align(O, OUpper). OUpper is then used as the reference ontology for
exchanging information among agents, without requiring to any agent to disclose its
own private ontology. In this case, the first two steps of the algorithm are repeated n
times - instead of twice - where n is the number of agents in the VE, and the last step
of the algorithm that merges two alignments for finding a third one, is omitted.

4.1 Complexity

We evaluate the algorithm complexity when used in the three different ways identified
in the previous paragraph.

Assumption. Given a concept C1 ∈ O1, finding a mapping between C1 and any concept
in O2 by exploiting techniques based on a combination of string comparison, natural
language processing techniques, and exploitation of linguistic resources, is in O(V2),
where V2 is the number of concepts of O2.

102

We obtain this result because we may consider that string comparison, NLP tech-
niques and exploitation of a fixed-size thesaurus require the same amount of time
Tstring,NLP,thesaurus whatever the two concepts to be mapped.

Usage 1 - Classical way: The time required for aligning O1 with V1 vertices and O2

with V2 vertices without exploiting an upper ontology is the time required by perform-
ing only the first step of the algorithm, namely O(V1 ∗ V2).

Usage 2 - Incremental way: O1 is the ontology owned by Ag1 that wants to elicit
O2 owned by Ag2, and align it with O1. OUpper is the reference upper ontology. The
alignment between OUpper and O1 (first step of the algorithm) is done once and forall,
and costs O(VUpper ∗ V1). We do not count this time as part of the online incremental
alignment process, since it is done offline, and only once.

Assuming that for any concept C1 in O1 there are at most k concepts in OUpper that
have a mapping with C1 with a confidence greater that a given threshold, with k fixed,
the concepts of OUpper to which at least some concept in O1 maps are at most in k ∗V1,
and identify a sub-ontology OUpper(O1) of OUpper. When j new concepts of O2 arrive
as part of a message from Ag2 to Ag1, they may be aligned only with the concepts
in OUpper(O1) (second step of the algorithm). Since the concepts in OUpper(O1) are
k ∗V1, aligning j concepts of O2 with them requires O(j ∗V1) (k is a constant, thus we
drop it from the time complexity).

After this alignment has been computed, it must be merged with the one between
OUpper and O1. The merge step requires O(j ∗ V1).

To make a comparison with the “classical” approach, let us suppose that a message
containing all the concepts of O2 arrives from Ag2 to Ag1. This will require that all
the V2 concepts of O2 are aligned with those in O1. The complexity of finding this
alignment is O(V1 ∗ V2) (second step of the algorithm). The last step of the algorithm
requires once again O(V1 ∗ V2) resulting into a O(V1 ∗ V2) overall time complexity.
If we exclude the first step of the algorithm, the time required for aligning O1 and O2

by exploiting OUpper as a bridge is the same required for aligning O1 and O2 without
using OUpper.

Upper ontology way: If V is the number of concepts of O, and VUpper is the number
of concepts of OUpper, finding an alignment between O and Upper requires O(V ∗
VUpper).

In the Virtual Enterprise scenario, finding an alignment between any two ontologies
O1, ..., On via OUpper requires O(n ∗ Vmax ∗ VUpper) where Vmax is the number of
concepts belonging to the largest ontology in the set {O1, ..., On}. In fact, the alignment
step of the algorithm must be performed not only twice, but n times, and the merge
step is not needed, since all virtual enterprises will communicate using concepts from
OUpper. We may use Vmax as an upper bound for the number of concepts of O1, ..., On,
and consider that any alignment between one ontology in this set, and OUpper requires
at most O(Vmax ∗ VUpper) time. Since the alignments to compute are n, we obtain the
stated complexity result.

103

If we did not exploit OUpper as a bridge among O1, ..., On, alignments between any
two couples of ontologies O1, ..., On should be computed to allow virtual enterprises to
communicate, and this would require to compute n ∗ (n− 1) alignments, instead of n.

The choice of using OUpper in order to obtain a gain in complexity depends on the
size of OUpper. If the size of all the ontologies in O1, ..., On is comparable to that of
OUpper, let us name this size S, the complexity of the algorithm that uses OUpper as a
bridge is in O(n ∗ S2), while the complexity of the algorithm that does not use OUpper

as a bridge is in O(n2 ∗S2). If OUpper is much larger than O1, ..., On, it might be better
to compute the n∗ (n−1) small alignments between each couple of ontologies, instead
of computing n very large alignments between any ontology and OUpper.

In this second case, however, there is a real gain only if the system is closed and
no new ontologies will be aligned in subsequent moments. In fact, if a new ontology
Onew needs to be aligned, and no upper ontology OUpper has been used, Onew must
be aligned with n ontologies instead than with only one. In an open system, such an
approach may become soon unacceptable.

4.2 Implementation

The implementation of the algorithm and its testing are under way. In this section we
describe the approach that we are following; changes are still possible according to the
experimental results that we will obtain and that will drive our future work.

We have chosen to exploit an API for ontology alignment developed by J. Euzenat,
with contributions from other researchers. 1 The API provides services for

– storing, finding, and sharing alignments;
– piping alignment algorithms;
– manipulating alignments;
– comparing alignments.

The Alignment interface provides the following methods:

NameEqAlignment compares the equality of class and property names and aligns
those objects with the same name;

EditDistNameAlignment uses an editing (or Levenshtein) distance between entity
names. It builds a distance matrix and chooses the alignment based on that dis-
tance;

SubsDistNameAlignment computes a substring distance on the entity name;
StrucSubsDistNameAlignment computes a substring distance on the entity names

and aggregates this distance with the symmetric difference of properties in classes.

The pseudo-code for the align and merge functions is given below. Ontologies O1
and O2 are loaded from two URIs (the loadOntology method is provided by Euzenat’s
API). AlignmentMethod1 ... AlignmentMethodN will be chosen among the align-
ment methods provided by the API and listed above, and combine will combine the
results of the alignments performed with different methods, for example by pipelining
them. The merge function implements the algorithm introduced in the beginning of
Section 4, in an iterative way.

1 http://alignapi.gforge.inria.fr/

104

p u b l i c Al ignment a l i g n (URI u r i 1 , URI u r i 2) {
OWLOntology O1 = l o a d O n t o l o g y (u r i 1) ;
OWLOntology O2 = l o a d O n t o l o g y (u r i 2) ;

A l i g n m e n t P r o c e s s A1 = new AlignmentMethod1 (O1 , O2) ;
. . .
A l i g n m e n t P r o c e s s AN = new AlignmentMethodN (O1 , O2) ;

Al ignment A = combine (A1 , A2 , . . . , AN) ;

r e t u r n A; }

p u b l i c Al ignment merge (Al ignment A, Al ignment B) {
Al ignment M = n u l l ;

f o r each mapping m i n A
f o r each mapping n i n B

i f (m. C2 i s e q u a l t o n . C2)
t h e n
add (< id , m. C1 , n . C2 , m. Conf∗n . Conf >) t o M;

r e t u r n M; }

The output file would consist of XML structures like the one shown below.

<Al ignment >
<map>

< C e l l >
< i d e n t i f i e r

r d f : d a t a t y p e = ’ h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# i n t e g e r ’>
Id < / i d e n t i f i e r >

< e n t i t y 1 r d f : r e s o u r c e = ’O1# Concept1 ’ / >
< e n t i t y 2 r d f : r e s o u r c e = ’O2# Concept2 ’ / >
<measure

r d f : d a t a t y p e = ’ h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# f l o a t ’>
Conf < / measure >

< / C e l l >
< / map>
. . .

< / Al ignment >

Each correspondence (map) is made of an integer identifier, two references to the
aligned entities, and a confidence measure ([0,1]) in this correspondence.

5 Conclusions

The work proposed in this paper originates from the observation that, in many situ-
ations, agents need to “learn” new knowledge that must be understood and added to
the already possessed knowledge on-the-fly, in order to communicate in a profitable
way with other agents in an open, dynamic system. The approaches for coping with
this integration need to approximate and optimize the newly acquired knowledge. In

105

fact, the new knowledge cannot be “precise” since it comes from heterogeneous agents
with which agreement neither on the terms to be used in the communication, nor on
their meaning, had been made before. The common knowledge shared among agents,
that is often implicit even to the agents themselves (in case of human agents), must be
constructed via interaction, in an incremental way.

Starting from these considerations, we have designed an algorithm for enhancing
communication among heterogeneous agents via incremental ontology alignment and
exploitation of upper ontologies. The agents that may benefit from implementing such
an algorithm are “semantic web agents” equipped with an ontology and able to commu-
nicate via the net, be it an intranet, like in the Virtual Enterprise scenario, or the Inter-
net, like in the Personalised Content Provider scenario. Both issues that characterise our
approach, i.e., incremental alignment and use of upper ontologies, are original contri-
butions, as well as the comparison among BFO, Cyc, DOLCE, GFO, PROTON, Sowa’s
ontology, and SUMO, that we have drawn.

At the time of writing, implementation and testing of our algorithm are still under
way, but we will soon receive feedback from the implementation results, and this will
give us an important help in understanding under which conditions the exploitation of
upper ontologies is feasible, and which upper ontologies are better for being used as
a bridge in the alignment process. Our current work is entirely aimed at completing
the implementation of the algorithm and systematically describing our experimental
results. Afterwards, one extension of our approach that might be interesting to explore
is whether the seven upper ontologies that we have described in our paper may be
themselves aligned into one “upper-upper ontology”.

Acknowledgments

We want to acknowledge all the researchers that helped in drawing the comparison of
Section 3.1 with their constructive comments and useful advices. In particular, many
thanks go to J. Euzenat, A. Kiryakov, L. Lefkowitz, F. Loebe, A. Pease, J. Schoening,
P. Shvaiko, and H. Stenzhorn. We also thank A. Locoro for her thoughtful advices.

References

1. P. A. Bernstein, S. Melnik, and J. E. Churchill. Incremental schema matching. In
VLDB’2006, 32nd International Conference on Very Large Data Bases, Proceedings, pages
1167–1170. VLDB Endowment, 2006.

2. P. Bouquet, J. Euzenat, E. Franconi, L. Serafini, G. Stamou, and S. Tessaris. Specification of a
common framework for characterizing alignment. Technical Report D2.2.1, NoE Knowledge
Web project, 2004.

3. H. Davulcu, M. Kifer, L. R. Pokorny, C. R. Ramakrishnan, I. V. Ramakrishnan, and S. Daw-
son. Modeling and analysis of interactions in virtual enterprises. In RIDE-VE’99, 9th In-
ternational Workshop on Research Issues on Data Engineering: Information Technology for
Virtual Enterprises, Proceedings, pages 12–18. IEEE Computer Society, 1999.

4. J. Euzenat. An API for ontology alignment. In S. A. McIlraith, D. Plexousakis, and F. van
Harmelen, editors, International Semantic Web Conference, Proceedings, volume 3298 of
Lecture Notes in Computer Science, pages 698–712. Springer, 2004.

106

5. J. Euzenat, T. Le Bach, J. Barrasa, and P. Bouquet et al. State of the art on ontology align-
ment. Technical Report D2.2.3, NoE Knowledge Web project, 2005.

6. N. Gibbins, S. Harris, and N. Shadbolt. Agent-based semantic web services. In WWW
’03, 12th International Conference on World Wide Web, Proceedings, pages 710–717. ACM
Press, 2003.

7. P. Grenon. BFO in a nutshell: A bi-categorial axiomatization of BFO and comparison with
DOLCE. Technical Report 06/2003, IFOMIS, University of Leipzig, 2003.

8. A. Y. Halevy. Why your data won’t mix. ACM Queue, 3(8):50–58, 2005.
9. J. A. Hendler. Agents and the semantic web. IEEE Intelligent Systems, 16(2):30–37, 2001.

10. H. Herre, B. Heller, P. Burek, R. Hoehndorf, F. Loebe, and H. Michalek. General formal
ontology (GFO) – part I: Basic principles. Technical Report 8, Onto-Med, University of
Leipzig, Germany, 2006.

11. L. Kerschberg, M. Chowdhury, A. Damiano, H. Jeong, S. Mitchell, J. Si, and S. Smith.
Knowledge sifter: Agent-based ontology-driven search over heterogeneous databases using
semantic web services. In M. Bouzeghoub, C. A. Goble, V. Kashyap, and S. Spaccapietra,
editors, Semantics for Grid Databases, First International IFIP Conference on Semantics of
a Networked World: ICSNW 2004, Revised Selected Papers, volume 3226 of Lecture Notes
in Computer Science, pages 278–295. Springer, 2004.

12. J-S. Lee and K-H. Lee. XML schema matching based on incremental ontology update.
In X. Zhou, S. Y. W. Su, M. P. Papazoglou, M. E. Orlowska, and K. G. Jeffery, editors, Web
Information Systems - WISE 2004, 5th International Conference on Web Information Systems
Engineering, Proceedings, volume 3306 of Lecture Notes in Computer Science, pages 608–
618. Springer, 2004.

13. V. Mascardi, V. Cordí and P. Rosso. A comparison of upper ontologies. Technical Report
DISI-TR-06-21, University of Genoa, 2006.

14. S. Munroe, T. Miller, R. A. Belecheanu, M. Pechoucek, P. McBurney, and M. Luck. Cross-
ing the agent technology chasm: Lessons, experiences and challenges in commercial appli-
cations of agents. The Knowledge Engineering Review, 21(4):345 – 392, 2006. Cambridge
University Press.

15. I. Niles and A. Pease. Towards a standard upper ontology. In C. Welty and B. Smith, edi-
tors, FOIS 2001, 2nd International Conference on Formal Ontology in Information Systems,
Proceedings, pages 2–9. ACM Press, 2001.

16. A. Pease. Formal representation of concepts: The Suggested Upper Merged Ontology and
its use in linguistics. In A. C. Schalley and D. Zaefferer, editors, Ontolinguistics. How On-
tological Status Shapes the Linguistic Coding of Concepts. Mouton de Gruyter, 2006.

17. A. Pease and C. Fellbaum. Formal ontology as interlingua: The SUMO and WordNet linking
project and GlobalWordNet. To appear.

18. S. K. Semy, M. K. Pulvermacher, and L. J. Obrst. Toward the use of an upper ontology
for U.S. government and U.S. military domains: An evaluation. Technical Report MTR
04B0000063, The MITRE Corporation, 2004.

19. J. F. Sowa. In Knowledge Representation: Logical, Philosophical, and Computational Foun-
dations. Brooks Cole Publishing, 1999.

20. K. P. Sycara, M. Paolucci, J. Soudry, and N. Srinivasan. Dynamic discovery and coordination
of agent-based semantic web services. IEEE Internet Computing, 8(3):66–73, 2004.

21. Wikipedia. Upper ontology – Wikipedia, the Free Encyclopedia, 2006. [Online; accessed
31-July-2007].

22. M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. The Knowledge
Engineering Review, 10(2):115–152, 1995.

107

A Service-Oriented Approach for
Curriculum Planning and Validation

Matteo Baldoni1, Cristina Baroglio1, Ingo Brunkhorst2,
Elisa Marengo1, Viviana Patti1

1 Dipartimento di Informatica — Università degli Studi di Torino
c.so Svizzera, 185, I-10149 Torino (Italy)

{baldoni,baroglio,patti}@di.unito.it, elisa.mrng@gmail.com
2 L3S Research Center, University of Hannover

D-30539 Hannover, Germany
brunkhorst@l3s.de

Abstract. We present a service-oriented personalization system, set in
an educational framework, based on a semantic annotation of courses,
given at a knowledge level (what the course teaches, what is requested to
know for attending it in a profitable way). The system supports users in
building personalized curricula, formalized by means of an action theory.
It is also possible to verify the compliance of curricula w.r.t. a model,
expressing constraints at a knowledge level. For what concerns the first
task, classical planning techniques are adopted, which take into account
both the student’s initial knowledge and her learning goal. Instead, cur-
ricula validation is done against a model, formalized as a set of temporal
constraints. We have developed a prototype of the planning and valida-
tion services, by using -as reasoning engines- SWI-Prolog and the SPIN
model checker. Such services will be supplied and combined as plug-and-
play personalization services in the Personal Reader framework.

1 Introduction and Motivation

The birth of the Semantic Web brought along standard models, languages, and
tools for representing and dealing with machine-interpretable semantic descrip-
tions of Web resources, by giving a strong new impulse to research on personal-
ization. The introduction of machine-processable semantics makes the use of a
variety of reasoning techniques for implementing personalization functionalities
possible, widening the range of the forms that personalization can assume. So
far, reasoning in the Semantic Web is mostly reasoning about knowledge ex-
pressed in some ontology. However personalization may involve also other kinds
of reasoning and knowledge representation, that conceptually lie at the logic and
proof layers of the Semantic Web tower.

Moreover, the next Web generation promises to deliver Semantic Web Ser-
vices, that can be retrieved and combined in a way that satisfies the user. It opens
the way to many forms of service-oriented personalization. Web services provide
an ideal infrastructure for enabling interoperability among personalization appli-
cations and for constructing Plug&Play-like environments, where the user can

108

select and combine the kinds of services he or she prefers. Personalization can
be obtained by taking different approaches, e.g. by developing services that of-
fer personalization functionalities as well as by personalizing the way in which
services are selected, and composed in order to meet specific user’s requirements.

In the last years we carried on a research in the educational domain, by fo-
cussing on semantic web representations of learning resources and on automated
reasoning techniques for enabling different and complementary personalization
functionalities, e.g. curriculum sequencing [6, 7] and verification of the compli-
ance of a curriculum against some course design goals [5]. Our current aim is to
implement such results in an organic system, where different personalization ser-
vices, that exploit semantic web reasoning, can be combined to support the user
in the task of building a curriculum, based on learning resources that represent
courses.

While in early times learning resources were simply considered as “contents”,
strictly tied to the platform used for accessing them, recently, greater and greater
attention has been posed on the issue of re-use and of a cross-platform use of
educational contents. The proposed solution is to adopt a semantic annotation
of contents based on standard languages, e.g. RDF and LOM. Hereafter, we will
consider a learning resource as formed by educational contents plus semantic
meta-data, which supply information on the resources at a knowledge level, i.e.
on the basis of concepts taken from an ontology that describes the educational
domain. In particular we rely on the interpretation of learning resources as ac-
tions discussed in [6, 7]: the meta-data captures the learning objectives of the
learning resource and its pre-requisites. By doing so,one can rely on a classical
theory of actions and apply different reasoning methods -like planning- for build-
ing personalized curricula [6, 7]. The modeling of learning resources as actions
also enables the use of model checking techniques for developing a validation
service that detects if a user-given curriculum is compliant w.r.t an abstract
model, given as a set of constraints. In the following we present our achieve-
ments in the implementation of a Planning service and a Validation service that
can interoperate within the Personal Reader Framework [18].

Curriculum planning and validation offer a useful support in many practical
contexts and can be fruitfully combined for helping students or teaching insti-
tutions. Often a student knows what competency he/she would like to acquire
but has no knowledge of which courses will help him/her acquiring it. Moreover,
taking courses at different Universities is becoming more and more common in
Europe. As a consequence, building a curriculum might become a complicated
task for students, who must deal with an enormous set of courses across the
European countries, each described in different languages and on the basis of
different keywords.

The need of personalizing the sequencing of learning resource, w.r.t. the stu-
dent’s interests and context, has often to be combined with the ability to check
that the resulting curriculum complies against some abstract curricula specifi-
cation, which encodes the curricula-design goals expressed by the teachers or
by the institution offering the courses. Consider a student, who wants to build

109

a valid curriculum with the support of our automatic system. The student can
either use as a basis the suggestion returned by the system or he/she can design
the curriculum by hand, based on own criteria. In both cases a personalized
curriculum is obtained and can be given in input to the validation service for
checking the compliance against a curricula model. Curricula models specify
general rules for building learning paths and can be interpreted as constraints
designed by the University for guaranteeing the achievement of certain learning
goals. These constraints are to be expressed in terms of knowledge elements, and
maybe also on features that characterize the resources.

Consider now a university which needs to certify that the specific curricula,
that it offers for achieving a certain educational goal, and that are built upon the
courses offered locally by the university itself, respect some European guidelines.
In this case, we could, in fact, define the guidelines as a set of constraints at an
abstract level, i.e. as relations among a set of competencies which should be
offered in a way that meets some given scheme. At this point the verification
could be performed automatically, by means of a proper reasoner. Finally, the
automatic checking of compliance combined with curriculum planning could be
used for implementing processes like cooperation among institutes in curricula
design and integration, which are actually the focus of the so called Bologna
Process [15], promoted by the EU.

While SCORM [2] and Learning Design [19, 20] represent the most impor-
tant steps in the direction of managing and using e-learning based courses and
workflows among a group of actors participating in learning activities, most of
the available tools lack the machine-interpretable information about the learning
resources, and as a result they are not yet open for reasoning-based personaliza-
tion and automatic composition and verification. Given our requirements, it is a
natural choice to settle our implementation in the Personal Reader (PR) frame-
work. The PR relies on a service-oriented architecture enabling personalization,
via the use of semantic Personalization Services. Each service offers a differ-
ent personalization functionality, e.g. recommendations tailored to the needs of
specific users, pointers to related (or interesting or more detailed/general) infor-
mation, and so on. These semantic web services communicate solely based on
RDF documents.

The paper is organized as follows. Section 2 describes our approach to the
representation and reasoning about learning resources, curricula, and curricula
models. The implementation of the two services and their integration into the
PR Framework is discussed in section 3. We finish with conclusions and hints on
future work in Section 4.

2 Curricula representation and reasoning

Let us begin with the introduction of our approach to the representation of learn-
ing resources, curricula, and curricula models. The basic idea is to describe all
the different kinds of objects, that we need to tackle and that we will introduce
hereafter, on the basis of a set of predefined competencies, i.e. terms identifying

110

specific knowledge elements. We will use the two terms as synonyms. Competen-
cies can be thought of, and implemented, as concepts in a shared ontology. In
particular, for what concerns the application system described here, competen-
cies were extracted by means of a semi-automatic process and stored as an RDF
file (see Section 3.1 for details).

Given a predefined set of competencies, the initial knowledge of a student
can be represented as a set of such concepts. This set changes, typically it grows,
as the student studies and learns. In the same way, a user, who accesses a repos-
itory of learning resources, does it with the aim of finding materials that will
allow him/her to acquire some knowledge of interest. Also this knowledge, that
we identify by the term learning goal, can be represented as a set of knowl-
edge elements. The learning goal is to be taken into account in a variety of
tasks. For instance, the construction of a personalized curriculum is, actually,
the construction of a curriculum which allows the achievement of a learning goal
expressed by the user. In Section 3 we will describe a curricula planning service
for accomplishing this task.

2.1 Learning resources and curricula

A curriculum is a sequence of learning resources that are homogeneous in their
representation. Based on work in [6, 7], we rely on an action theory, and take the
abstraction of resources as simple actions. More specifically, a learning resource
is modelled as an action for acquiring some competencies (called effects). In
order to understand the contents supplied by a learning resource, the user is
sometimes required to own other competencies, that we call preconditions. Both
preconditions and effects can be expressed by means of a semantic annotation of
the learning resource [7]. In the following we will often refer to learning resources
as “courses” due to the particular application domain that we have considered
(university curricula).

As a simple example of “learning resource as action”, let us, then, report
the possible representation (in a classical STRIPS-like notation) of the course
“databases for biotechnologies” (db for biotech for short):

ACTION: db for biothec(),
PREREQ: relational db, EFFECTS: scientific db

The prequisites to this action is to have knowledge about relational databases.
Its effect is to supply knowledge about scientific databases.

Given the above interpretation of learning resources, a curriculum can be
interpreted as a plan, i.e. as a sequence of actions, whose execution causes tran-
sitions from a state to another, until some final state is reached. The initial state
contains all the competences that we suppose available before the curriculum
is taken, e.g. the knowledge that the student already has. This set can also be
empty. The final state is sometimes required to contain specific knowledge ele-
ments, for instance, all those that compose the user’s learning goal. Indeed, often
curricula are designed so to allow the achievement of a well-defined learning goal.

111

A transition between two states is due to the application of the action cor-
responding to a learning resource. Of course, for an action to be applicable, its
preconditions must hold in the state to which it should be applied. The applica-
tion of the action consists in an update of the state. We assume that competences
can only be added to states. Formally, we assume that the domain is monotonic.
The intuition behind this assumption is that the act of using a new resource will
never erase from the students’ memory the concepts acquired insofar. Knowledge
grows incrementally.

2.2 Curricula models

Curricula models consist in sets of constraints that specify desired properties of
curricula. Curricula models are to be defined on the basis of knowledge elements
as well as of learning resources (courses). In particular, we would like to restrict
the set of possible sequences of resources corresponding to curricula. This will
be done by imposing constraints on the order by which knowledge elements
are added to the states (e.g. “a knowledge element α is to be acquired before
a knowledge element β”), or by specifying some educational objectives to be
achieved, in terms of knowledge that must be contained in the final state (e.g. “a
knowledge element α must be acquired sooner or later”). Therefore, we represent
a curricula model as a set of temporal constraints. Being defined on knowledge
elements, a curricula model is independent from the specific resources that are
taken into account, for this reason, it can be reused in different contexts and it
is suitable to open and dynamic environments like the web.

The possibility of verifying the compliance of curricula to models is extremely
important in many applicative contexts, as explained by examples in the intro-
duction. In some cases these checks could be integrated into the curriculum
construction process; nevertheless, it is important to be able to perform the ver-
ification independently from the construction process. Let us consider again our
simple scenario concerning a university, which offers a set of curricula that are
proved to satisfy the guidelines given by the EU for a certain year. After a few
years, the EU guidelines change: our University has the need to check if the
curricula that it offers, still satisfy the guidelines, without rebuilding them.

A natural choice for representing temporal constraints on action paths is
linear-time temporal logic (LTL) [14]. This kind of logic allows to verify if a
property of interest is true for all the possible executions of a model (in our
case the specific curriculum). This is often done by means of model checking
techniques [12].

The curricula as we represent them are, actually, Kripke structures. Briefly,
a Kripke structure identifies a set of states with a transition relation that allows
passing from a state to another. In our case, the states contain the knowledge
items that are owned at a certain moment. Since the domain is monotonic (as
explained above we can assume that knowledge only grows), states will always
contain all the competencies acquired up to that moment. The transition relation
is given by the actions that are contained in the curriculum that is being checked.

112

It is possible to use the LTL logic to verify if a given formula holds starting from
a state or if it holds for a set of states.

For example, in order to specify in the curricula model constraints on what
to achieve, we can use the formula 3α, where 3 is the eventually operator.
Intuitively, such a formula expresses the fact that a set of knowledge elements
will be acquired sooner or later. Moreover, constraints concerning how to achieve
the educational objectives, such as “a knowledge element β cannot be acquired
before the knowledge element α is acquired”, can, for instance, be expressed by
the LTL temporal formula ¬β U α, where U is the weak until operator. Given
a set of knowledge elements to be acquired, such constraints specify a partial
ordering of the same elements.

2.3 Planning and Validation

Given a semantic annotation with preconditions and effects of the courses, clas-
sical planning techniques are exploited for creating personalized curricula, in
the spirit of the work in [6, 7]. Intuitively the idea is that, given a repository
of learning resources, which have been semantically annotated as described, the
user expresses a learning goal as a set of knowledge elements he/she would like
to acquire, and possibly also a set of already owned competencies. Then, the
system applies planning to build a sequence of learning resources that, read in
sequence, will allow him/her to achieve the goal.

The particular planning methodology that we implemented (see Section 3.3
for details) is a simple depth-first forward planning (an early prototype was
presented in [3]), where actions cannot be applied more than once. The algorithm
is simple:

1. Starting from the initial state, the set of applicable actions (those whose
preconditions are contained in the current state) is identified.

2. One of such actions is selected and its application is simulated leading to a
new state.

3. The new state is obtained by adding to the previous one the competencies
supplied as effects of the selected action.

4. The procedure is repeated until either the goal is reached or a state is
reached, in which no action can be applied and the learning goal is not
satisfied.

5. In the latter situation, backtracking is applied to look for another solution.

The procedure will eventually end because the set of possible actions is finite
and each is applied at most once. If the goal is achieved, the sequence of actions
that label the transitions leading from the initial to the final state is returned
as the resulting curriculum. If desired, the backtracking mechanism allows to
collect a set of alternative solutions to present to the user.

Besides the capability of automatically building personalized curricula, it is
also interesting to perform a set of verification tasks on curricula and curricula
models. The simplest form of verification consists in checking the soundness of

113

curricula which are built by hand by users themselves, reflecting their own per-
sonal interests and needs. Of course, not all sequences which can be built starting
from a set of learning resources are lawful. Learning dependencies, imposed by
courses themselves in terms of preconditions and effects, must be respected. In
other words, a course can appear at a certain point in a sequence only if it is
applicable at that point, therefore, there are no competency gaps. These implicit
“applicability constraints” capture precedences and dependencies that are innate
to the nature of the taught concepts. In particular, it is important to verify that
all the competencies, that are necessary to fully understand the contents, offered
by a learning resource, are introduced or available before that learning resource
is accessed. Usually, this verification, as stated in [13], is performed manually by
the learning designer, with hardly any guidelines or support.

Given the interpretation of resources as actions, the verification of the sound-
ness of a curriculum, w.r.t. the learning dependencies and the learning goal, can
be interpreted as an executability check of the curriculum. Also in this case, the
algorithm is simple:

1. Given an initial state, representing the knowledge available before the cur-
riculum is attended, a simulation is executed, in which all the actions in the
curriculum are (virtually) executed one after the other.

2. An action (representing a course) can be executed only if the current state
contains all the concepts that are in the course precondition. Intuitively, it
will be applied only if the student owns the notions that are required for
understanding the topics of the course.

3. If, at a certain point, an action that should be applied is not applicable be-
cause some precondition does not hold, the verification fails and the reasons
of such failure can be reported to the user.

4. Given that all the courses in the sequence can be applied, one after the other,
the final state that is reached must be compared with the learning goal of the
student: all the desired goal concepts must be achieved, so the corresponding
knowledge elements must be contained in the final state.

This latter task actually corresponds to another basic form of verification, i.e.
to check whether a (possibly hand-made) curriculum allows the achievement of
the desired learning goal. These forms of basic verifications can be accomplished
by the service described in Section 3.4.

Another interesting verification task consists in checking if a personalized
curriculum is valid w.r.t. a particular curricula model or, following Brusilovski’s
terminology, checking if the curriculum is compliant against the course design
goals [11]. Indeed, a personalized curriculum that is proved to be executable,
cannot automatically be considered as being valid w.r.t. a particular curricula
model. A curricula model, in fact, imposes further constraints on what to achieve
and how achieving it. We will return to this kind of verification in Section 3.4.

114

3 Implementation in the Personal Reader Framework

The Personal Reader Framework has been developed with the aim of offering a
uniform entry point for accessing the Semantic Web, and in particular Semantic
Web Services. Indeed it offers an environment for designing, implementing and
realizing Web content readers in a service-oriented approach, for a more detailed
description, see [18] (http://www.personal-reader.de/).

In applications based on the Personal Reader Framework, a user can se-
lect and combine —plug together— which personalized support he or she wants
to receive. The framework has already been used for developing Web Content
Readers that present online material in an embedded context [10, 1, 17]. Besides

Fig. 1. Personal Reader Framework Overview

a user-interface, as shown in figure 1, a Personal Reader application consists
of three types of services. Personalization services (PService) provide personal-
ization functionalities: they deliver personalized recommendations for content,
as requested by the user and obtained or extracted from the Semantic Web.
Syndication Services (SynService) allow for some interoperability with the other
services in the framework, e.g. for the discovery of the applications interfaces by
a portal. The Connector is a single central instance responsible for all the com-
munication between user interface and personalization services. It selects services
based on their semantic description and on the requirements by the SynService.
The Connector protects –by means of a public-key-infrastructure (PKI)– the
communication among the involved parties. It also supports the customization
and invocation of services and interacts with a user modelling service, called the
UMService, which maintains a central user model.

115

3.1 Metadata Description of Courses

In order to create the corpus of courses, we started with information collected
from an existing database of courses. We used the Lixto [9] tool to extract the
needed data from the web-pages provided by the HIS-LSF (http://www.his.de/)
system of the University of Hannover. This approach was chosen based on our
experience with Lixto in the Personal Publication Reader [10] project, where we
used Lixto for creating the publications database by crawling the publication
pages of the project partners. The effort to adapt our existing tool for the new
data source was only small. From the extracted metadata we created an RDF
document, containing course names, course catalog identifier, semester, number
of credit points, effects and preconditions, and the type of course, e.g. laboratory,
seminar or regular course with examinations in the end, as illustrated in Figure 2.

Fig. 2. An annotated course from the Hannover course database

The larger problem was that the quality of most of the information in the
database turned out to be insufficient, mostly due to inconsistencies in the de-
scription of prerequisites and effects of the courses. Additionally the corpus was
not annotated using a common set of terms, but authors and department sec-
retaries used a slightly varying vocabulary for each of their course descriptions,
instead of relying on a common classification system, like e.g. the ACM CCS for
computer science.

As a consequence, we focussed only on a subset of the courses (computer sci-
ence and engineering courses), and manually post-processed the data. Courses
are annotated with prerequisites and effects, that can be seen as knowledge con-
cepts or competences, i.e. ontology terms. After automatic extraction of effects

116

and preconditions, the collected terms were translated into proper English lan-
guage, synonyms were removed and annotations were corrected where necessary.
The resulting corpus had a total of 65 courses left, with 390 effects and 146
preconditions.

3.2 The User Interface and Syndication Service

User can select the
effects / knowledge
she wants to acquire

The system displays
the result in a way, so

the user can add,
remove, modify ele-
ments in her plan

The user can submit an
existing plan or re-use

one stored in her
profile

The system shows a
summary of the
validation step

PLANNER
SWI-Prolog

The system
validates the plan

The system
validates the plan

Generating the plan
from the request

The user can go back
to refine her plan

VALIDATION
SPIN model checker

VALIDATION
SPIN model checker

Fig. 3. The Actions supported by the User Interface

In our implementation, the user interface (see figure 3) is responsible for
identifying the user, presenting the user an interface to select the knowledge
she wants to acquire, and to display the results of the planning and validation
step, allowing further refinement of created plans. The creation of curriculum se-
quences and the validation are implemented as two independent Personalization
Services, the “Curriculum Planning PService”, and the “Curriculum Validation
PService”. Because of the plug-and-play nature of the infrastructure, the two
PServices can be used by other applications (SynServices) as well (Fig. 3). Also
possible is that PServices, which provide additional planning and validation ca-
pabilities can be used in our application. The current and upcoming future imple-
mentations of the Curriculum Planning and Validation Prototype are available
at http://semweb2.kbs.uni-hannover.de:8080/plannersvc.

3.3 The Curriculum Planning PService

In order to integrate the Planning Service as a plug-and-play personalization
service in the Personal Reader architecture we worked at embedding the Prolog
reasoner into a web service. Figure 4 gives an overview over the components
in the current implementation. The web service implements the Personalization

117

Fig. 4. Curriculum Planning Web Service

Service (PService [18]) interface, defined by the Personal Reader framework,
which allows for the processing of RDF documents and for inquiring about the
services capabilities. The Java-to-Prolog Connector runs the SWI-Prolog exe-
cutable in a sub-process; essentially it passes the RDF document containing the
request as-is to the Prolog system, and collects the results, already represented
as RDF.

The curriculum planning task itself is accomplished by a reasoning engine,
which has been implemented in SWI Prolog3. The interesting thing of using
SWI Prolog is that it contains a semantic web library allowing to deal with
RDF statements. Since all the inputs are sent to the reasoner in a RDF request
document, it actually simplifies the process of interfacing the planner with the
Personal Reader. In particular the request document contains: a) links to the
RDF document containing the database of courses, annotated with metadata,
b) a reference to the user’s context c) the user’s actual learning goal, i.e. a set
of knowledge concepts that the user would like to acquire, and that are part of
the domain ontology used for the semantic annotation of the actual courses. The
reasoner can also deal with information about credits provided by the courses,
when the user sets a credit constraint together with the learning goal.

Given a request, the reasoner runs the Prolog planning engine on the database
of courses annotated with prerequisites and effects. The initial state is set by
using information about the user’s context, which is maintained by the User
Modelling component of the PR. In fact such user’s context includes informa-
tion about what is considered as already learnt by the student (attended courses,
learnt concepts) and such information is included in the request document. The
Prolog planning engine has been implemented by using a classical depth-first
search algorithm [22]. This algorithm is extremely simple to implement in declar-
ative languages as Prolog.

3 http://www.swi-prolog.org/

118

At the end of the process, a RDF response document is returned as an output.
It contains a list of plans (sequences of courses) that fulfill the user’s learning
goals and profile. The maximum number of possible solutions can be set by the
user in the request document. Notice that further information stored in the user
profile is used at this stage for adapting the presentation of the solutions, here
simple hints are used to rank higher those plans that include topics that the user
has an expressed special interest in.

3.4 The Curriculum Validation PService

In order to verify if a curriculum is valid w.r.t. a curricula model, we adopt
model checking techniques, by using SPIN. To check a curriculum with SPIN,
this must be translated in the Promela language. Competencies are represented
as boolean variables. In the beginning, only those variables that represent the
initial knowledge of the student are true. Courses are implemented as actions
that can modify the value of the variables. Since our application domain is
monotonic, only those variables, whose value is false in the initial state, can be
modified.

The Promela program consists of two processes: one is named CurriculumVer-
ification and the other UpdateState. While the former contains a representation
of the curriculum itself, and simulates its execution, the latter contains the code
for updating the state (i.e. the set of competencies achieved so far) step by
step along the simulation of the execution of the curriculum. The two processes
communicate by means of two channels, attend and feedback. The notation at-
tend!courseName represents the fact that the course with name courseName is
to be attended. In this case the sender process is CurriculumVerification and the
receiver is UpdateState. UpdateState will check the preconditions of the course
in the current state and will send a feedback to CurriculumVerification after
updating the state. On the other hand, the notation feedback?feedbackMsg rep-
resents the possibility for the process Curriculum of receiving a feedback of kind
feedbackMsg from the process UpdateState.

Given these two processes, it is possible to perform a test, aimed at ver-
ifying the possible presence of competency gaps. This test is implemented as
a deadlock verification: if the sequence is correct w.r.t. the action theory, no
deadlock arises, otherwise a deadlock will be detected. The curricula model is to
be supplied apart, as a set of temporal logic formulas, possibly obtained by an
automatic translation process from a DCML representation. Notice that curric-
ula can contain branching points. The branching points are encoded by either
conditioned or non-deterministic if; each such if statement refers to a set of al-
ternative courses (e.g. languagesEnvironmentProg and programmingLanguages).
Depending on the course communicated by the channel attend, it updates the
state. The process continues until the message stop is communicated. Then the
learning goal is checked.

Let us see how to use the model checker to verify the temporal constraints
that make a curricula model. Model checking is the algorithmic verification of
the fact that a finite state system complies to its specification. In our case the

119

specification is given by the curricula model and consists of a set of temporal
constraints, while the finite state system is the curriculum to be verified.

SPIN allows to specify and verify every kind of LTL formulas and it also
allows to deal with curricula that at some points contain alternatives. This makes
the system suitable to more realistic application scenarios. In fact, for what
concerns curricula written by hand, users often do not have a clear mind and,
thus, it is difficult for them to write a single sequence. In the case of curricula
built by an automatic system, there are planners that are able to produce sets
of alternative solutions gathered in a tree structure.

The following are examples of constraints, expressed as LTL formulas, that
could be part of a curricula model:

(1) ¬jdbc U (sql ∧ relational algebra),
(2) ¬op systems U basis of prog,
(3) ¬basis of oo U basis of prog,
(4) 3basis of prog ⊃ 3basis of java prog,
(5) 3database,
(6) 3web services.

The first constraint means that before learning jdbc the student must own Knowl-
edge about sql and about relational algebra. The following two constraints are of
the same kind but involve different competencies. Constraint (4) means that if
the student acquires knowledge about “basis of programming”, he/she will also
have knowledge about “basis of java programming” but the two events are not
temporally related. Constraints (5) and (6) mean that soon or later knowledge
about databases and web services must be acquired.

4 Conclusion, Further and Related Works

In this work we have described the current state of the integration of semantic
personalization web services for Curriculum Planning and Validation within the
Personal Reader Framework. The goal of personalization is to create sequences of
courses that fit the specific context and the learning goal of individual students.
Despite some manual post-processing for fixing inconsistencies, we used real
information from the Hannover University database of courses for extracting the
meta-data. Currently the courses are annotated also by meta-data concerning
the schedule and location of courses, like for instance room-numbers, addresses
and teaching hours. As a further development, it would be interesting to let our
Curriculum Planning Service to make use also of such metadata in order to find
a solution that fits the desires and the needs of the user in a more complete way.

The Curriculum Planning Service has been integrated as a new plug-and-
play personalization service in the Personal Reader framework. In the current
implementation, the learning goal corresponds to a set of hard constraints; that
is to say that the planner returns only plans that satisfy them all. A different
choice would be to consider the constraints given by the goal as soft constraints,
and allow the return of plans which do satisfy the goal only partially. This

120

would be approapriate, for instance, in the case in which a student would like
to acquire a range of competencies of interest but it is not possible to build, on
top of a given repository of course descriptions, a curriculum for achieving them
all. Nevertheless, it would be possible to build a curriculum for achieving part
of them. In some circumstances, it would anyway be helpful for the student to
receive this information as a feedback. Of course, in this case many questions
arise, e.g. the issue of ranking the goals based on the actual interest of the
requestor, so to know what can possibly be discarded and what is mandatory.
From an implementation perspective, the spirit of the SOA infrustructure given
to the Personal Reader is, indeed, meant to easily allow extensions by adding
new Personalization Services. We can, therefore, think to develop and add a soft-
goal planning service, to be used in these circumstances. The new planner would
inherit the wrapping and interaction part from the current planning service but
implement an algorithm like for instance [16].

The Curriculum Validation Service has been designed. An early prototype of
the validation system based on the model checker SPIN has been developed [5]
and is currently being embedded in the same framework. The choice of relying
on SPIN, rather than developing a simpler and ad hoc checking system, is due
to the need of rapidly developing a prototype. For this reason we have decided
to rely on already exisiting and well-established technology. The engineering
of the developed services should be tailored to the specific kinds of constraint
that can be used to design the model. Analogous considerations can be done
for the planning algorithm. The one that has been used is the simplest that can
be thought of. Of course, there are many possible optimizations and extensions
(e.g. the adoption of soft goals mentioned above) that could be done, and many
algorithms are already available in the literature. Our choice has been motivated
by the desire of quickly testing our ideas rather than developing a system thought
for real use.

The Personal Reader Platform provides a natural framework for implement-
ing a service-oriented approach to personalization in the Semantic Web, allowing
to investigate how (semantic) web service technologies can provide a suitable in-
frastructure for building personalization applications, that consist of re-usable
and interoperable personalization functionalities. The idea of taking a service
oriented approach to personalization is quite new and was born within the per-
sonalization working group of the Network of Excellence REWERSE (Reasoning
on the Web with Rules and Semantics, http://rewerse.net).

Writing curricula models directly in LTL is not an easy task for the user.
For this reason, we have recently developed a graphical language, called DCML
(Declarative Curricula Model Language) [8, 4], inspired by DecSerFlow, the Declar-
ative Service Flow Language by van der Aalst and Pesic [23]. DCML allows to
express the temporal relations between the times of acquisition of the concepts.
The advantage of a graphical language is that drawing, rather than writing, con-
straints facilitates the user, who needs to represent curricula models, allowing
a general overview of the relations which exist between concepts. At the same
time, a rigorous and precise meaning is also given, due to the logic grounding of

121

the language. Moreover, in [4] we represent curricula as UML activity diagrams
and include the possibility of handling the concurrent attending of courses. Also
in this case curricula can be translated in Promela programs so that it becomes
possible to perform all the kinds of verification that we have described.

DCML, besides being a graphical language, has also a textual representation.
We are currently working at an integration of this new more sophisticated solu-
tion into the Personal Reader Framework by implementing an automatic system
for translating DCML textual representations into LTL, for translating curricula
(activity diagrams) in Promela, and then run the checks.

Another recent proposal for automatizing the competency gap verification is
done in [21] where an analysis of pre- and post-requisite annotations of the Learn-
ing Objects (LO), representing the learning resources, is proposed. In this ap-
proach, whenever an error will be detected by the validation phase, a correction
engine will be activated. This engine will use a “Correction Model” to produce
suggestions for correcting the wrong curriculum, by means of a reasoning-by-
cases approach. The suggestions will, then, be presented to the course devel-
oper, who is in charge to decide which ones to adopt (if any). Once a curriculum
will have been corrected, it will have to be validated again, because the cor-
rections might introduce new errors. Melia and Pahl’s proposal is inspired by
the CocoA system [11], that allows to perform the analysis and the consistency
check of static web-based courses. Competency gaps are checked by a prerequi-
site checker for linear courses, simulating the process of teaching with an overlay
student model. Pre- and post-requisites are represented by knowledge elements.

Acknowledgement This research has partially been funded by the European
Commission and by the Swiss Federal Office for Education and Science within
the 6th Framework Programme project REWERSE number 506779 (cf. http:
//rewerse.net).

References

1. F. Abel, I. Brunkhorst, N. Henze, D. Krause, K. Mushtaq, P. Nasirifar, and
K. Tomaschweski. Personal reader agent: Personalized access to configurable web
services. Technical report, Distributed Systems Institute, Semantic Web Group,
University of Hannover, 2006.

2. Advanced Distributed Learning Network. SCORM: The sharable content object
reference model, 2001. http://www.adlnet.org/Scorm/scorm.cfm.

3. M. Baldoni, C. Baroglio, I. Brunkhorst, N. Henze, E. Marengo, and V. Patti. A
Personalization Service for Curriculum Planning. In E. Herder and D. Heckmann,
editors, Proc. of the 14th Workshop ABIS, pages 17–20, Hildesheim, Germany,
October 2006.

4. M. Baldoni, C. Baroglio, and E. Marengo. Curricula Modeling and Checking. In
Proc. of AI*IA 2007: Advances in Artificial Intelligence, volume 4733 of LNAI,
pages 471–482. Springer, 2007.

5. M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and L. Torasso. Verifying the com-
pliance of personalized curricula to curricula models in the semantic web. In Proc.

122

of the Semantic Web Personalization Workshop, pages 53–62, Budva, Montenegro,
2006.

6. M. Baldoni, C. Baroglio, and V. Patti. Web-based adaptive tutoring: An approach
based on logic agents and reasoning about actions. Artificial Intelligence Review,
1(22):3–39, 2004.

7. M. Baldoni, C. Baroglio, V. Patti, and L. Torasso. Reasoning about learning object
metadata for adapting SCORM courseware. In L. Aroyo and C. Tasso, editors,
Int. Workshop on Engineering the Adaptive Web, EAW’04, pages 4–13, 2004.

8. M. Baldoni and E. Marengo. Curriculum Model Checking: Declarative Represen-
tation and Verification of Properties. In Proc. of 2nd Eur. Conf. EC-TEL, volume
4753 of LNCS, pages 432–437. Springer, 2007.

9. R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information extraction
with lixto. In Peter M. G. Apers, Paolo Atzeni, Stefano Ceri, Stefano Paraboschi,
Kotagiri Ramamohanarao, and Richard T. Snodgrass, editors, VLDB, pages 119–
128. Morgan Kaufmann, 2001.

10. R. Baumgartner, N. Henze, and M. Herzog. The personal publication reader:
Illustrating web data extraction, personalization and reasoning for the semantic
web. In ESWC, pages 515–530, 2005.

11. P. Brusilovsky and J. Vassileva. Course sequencing techniques for large-scale
web-based education. Int. J. Cont. Engineering Education and Lifelong learning,
13(1/2):75–94, 2003.

12. O. E. M. Clarke and D. Peled. Model checking. MIT Press, Cambridge, MA, USA,
2001.

13. Juri L. De Coi, Eelco Herder, Arne Koesling, Christoph Lofi, Daniel Olmedilla,
Odysseas Papapetrou, and Wolf Sibershi. A model for competence gap analysis.
In Proc. of WEBIST 2007, 2007.

14. E. A. Emerson. Temporal and model logic. In Handbook of Theoretical Computer
Science, volume B, pages 997–1072. Elsevier, 1990.

15. European Commission, Education and Training. The Bologna process. http:

//ec.europa.eu/education/policies/educ/bologna/bologna en.html.
16. E. Giunchiglia and M. Maratea. SAT-based planning with minimal-]actions plans

and “soft” goals. In Proc. of AI*IA 2007: Advances in Artificial Intelligence,
volume 4733 of LNAI. Springer, 2007.

17. N. Henze. Personal readers: Personalized learning object readers for the semantic
web. In 12th International Conference on Artificial Intelligence in Education,
AIED05, Amsterdam, The Netherlands, 2005.

18. N. Henze and D. Krause. Personalized access to web services in the semantic
web. In The 3rd International Semantic Web User Interaction Workshop (SWUI,
collocated with ISWC 2006, November 2006.

19. IMSGlobal. Learning design specifications. Available at http://www.imsglobal.

org/learningdesign/.
20. R. Koper and C. Tattersall. Learning Design: A Handbook on Modelling and De-

livering Networked Education and Training. Springer Verlag, 2005.
21. M. Melia and C. Pahl. Automatic Validation of Learning Object Compositions. In

Information Technology and Telecommunications Conference IT&T’2005: Doctoral
Symposium, Carlow, Ireland, 2006.

22. S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,
1995.

23. W. M. P. van der Aalst and M. Pesic. DecSerFlow: Towards a Truly Declarative
Service Flow Language. In Mario Bravetti and Gialuigi Zavattaro, editors, Proc.
of WS-FM, LNCS, Vienna, September 2006. Springer.

123

Integrating Agents, Ontologies, and
Web Services to Build

Flexible Sketch-based Applications

Giovanni Casella1,2 and Vincenzo Deufemia2

1 Dipartimento di Informatica e Scienze dell’Informazione – Università di Genova
Via Dodecaneso 35, 16146, Genova, Italy

casella@disi.unige.it
2 Dipartimento di Matematica e Informatica – Università di Salerno

Via Ponte don Melillo, 84084 Fisciano (SA), Italy
deufemia@unisa.it

Abstract. We present an approach based on web services, for building
open and dynamic agent societies aimed at hand-drawn sketch recogni-
tion. The approach exploits ontologies to enable agents to agree on mes-
sage semantics and service purposes, standard web services languages
to represent agent interaction protocols in a suitable way to be ex-
changed and handled by agents and web services to expose low-level
recognition services. The communication mechanisms that characterize
our approach, as well as the modular architecture allow agent societies
to self-organize at run time, for gaining the capability of recognizing new
domain languages, thus obtaining new flexible sketch-based applications.

1 Introduction

Sketching provides a natural way for humans to design (buildings, software,
electronic circuits, and so on), to communicate and cooperate, to share ideas, to
transfer information. As an example, sketching allows an architect, or engineer
to quickly specify a design. Architects make exploratory sketches before making
more definitive schematic design drawings and models, and finally construction
and fabrication drawings. Mechanical engineers make sketches as part of a pro-
cess that also includes calculations, material specifications, and detailed design
drawings.

Computers can support users in the sketching process only if they are able to
understand the sketch semantics, i.e., they can recognize what the user sketches
represent. However, since hand-drawn input tends to be highly variable and
inconsistent sketch interpretation turns out to be a difficult task. Sketch recog-
nition systems must robustly cope with the variations and ambiguities inherent
in hand drawings, facing the task of grouping a user’s pen strokes into clusters
representing intended symbols, the task of identifying several symbols in one
single stroke, and so on.

In [1] we have exploited intelligent agents to face the diagrammatic sketch
recognition problem. The use of agents was inspired by the observation that the

124

“virtual blank sheet” where the user draws represents a dynamic and unpre-
dictable environment, and the entities devoted to recognize the symbols of some
language must be responsive, pro-active, situated, autonomous, and social. In [2]
we have presented a Multi-Agent System (MAS) that makes use of collaborating
intelligent agents to coordinate a set of heterogeneous symbol recognizers and
to generate a sketch interpretation.

This system presents many features suitable for sketch understanding, but
it also shows several limitations. In particular, even if the MAS can be built to
recognize any domain language, it is impossible to change the domain language
while the system is running. This is mainly useful when the users exploit sketches
to express new ideas (e.g., an interior architect may wish to add a new shape
in its sketched design to represent a new decorative element, such as a flower
vase) or when the set of symbols to be recognized can evolve, as for example, in
the domain of hieroglyph recognition where new symbols can still be discovered.
Another limitation is that if we have a MAS able to recognize a set of symbols
S1, such as use case diagrams, it is not possible to use it to recognize a set of
symbols S2, such as finite state machines, even if S1 and S2 share some symbols.
Moreover, the MAS does not allow users to integrate interfaces customized to
specific tasks. As an example, if the MAS has been designed to facilitate stu-
dents in the specification of assignment’s solutions, it cannot be changed, at run
time, into a system that enables teachers to specify solutions to assignments and
automatically evaluate student work.

These limitations are mainly due to the lack of flexibility of the agent organi-
zation and interactions that, once specified at design time, cannot be adapted to
the domain and users’ needs at run-time. In this paper, we face these problems
by giving to the agents in the MAS suitable means

– to look for the services provided by the other agents,
– to interact with the other agents following heterogeneous interaction proto-

cols, and
– to be able to understand the message semantic and the meaning of the

services offered by each agent.

In this way it is possible to recognize new languages and to realize new sketch-
based applications changing the interactions between existing agents and/or
adding new agents at run-time. In particular, we propose to use ontologies to
enable our agents to agree on message semantics and service purposes, and stan-
dard web service languages to represent AIP in a way suitable to be exchanged
and handled by agents. Web services have also be used to expose low-level recog-
nition services.

The paper is organized as follows. Section 2 introduces the sketch under-
standing problem and our previously proposed solution. In Section 3 we present
the proposed open society for sketch understanding. Section 4 describes how
agents publish, reason and learn agent interaction protocols, while Section 5 de-
fines web services for sketch recognition. Finally, Section 6 contains a discussion
of related work and conclusions.

125

2 Sketch Recognition and a MAS to Support it

Sketches are informal drawings created by people to represent abstract concepts
and acquired by computers in the format of point chains. The pen trajectory on
the screen between each pair of pen-down and pen-up operations, i.e., a unit of
user’s original sketch input, is named stroke. As an example, the human stick
figure depicted in Fig. 1(a) is composed of four strokes.

(a) (b)

Fig. 1. Two examples of sketches: a sequence diagram (a) and a musical score
(b).

Usually, the interpretation of a sketch is performed by classifying the strokes
into primitive geometric objects, such as line, arc, and ellipse, and by clustering
the primitive shapes into a set of intended symbols. As an example, a human
stick is recognized by clustering five line strokes and one ellipse stroke properly
related. However, it is worth to note that, according to the user drawing style,
the shape of the abstract concepts, namely the symbols, can be drawn using a
varying number of strokes (e.g., the two upper rectangles in Fig. 1(a) have been
drawn with one stroke and three strokes, respectively), can contain ambiguities
(e.g., the recognizer can associate the head of the leftmost note in Fig. 1(b) both
to its right and left stems), or be incomplete. These issues make the recognition
of sketches a very critical task.

To minimize the recognition mistakes many systems have constrained the
user’s drawing style (e.g., enforcing users to carefully draw each symbol with
a single stroke) making the recognition process easier. However, in order to be
really usable and useful in practice, sketch recognition systems should not place
constraints on how the users can draw symbols. Indeed, users should be able to
draw without having to worry about where to start a stroke, how many strokes
to use, in what order to draw the strokes, etc. Beside this, in order to be flexibly
adapted to new needs and visual domain languages the recognition system should
be able to easily integrate new symbol recognizers without needing to change
any other component.

The multi-agent approach to sketch recognition proposed in [2] implements
a sketch recognition system having the above features. In particular, it

126

– manages the variation in drawing style by an ink parsing process that groups
and segments the user’s strokes into clusters of intended symbols;

– solves the ambiguities due to the possible membership of one stroke to more
than one symbol, by analyzing the objects surrounding the ambiguous parts,
i.e., the context around them;

– coordinates the behavior of the symbol recognizers in such a way to detect
and solve conflicting interpretations of symbols;

– integrates in a seamless way heterogeneous symbol recognizers in order to
exploit different techniques for recognizing different symbols.

The recognition approach is based on a MAS composed by intelligent coop-
erating agents with specific tasks. The MAS contains a set of Symbol Recognizer
Agents (SRAs) devoted to recognize the symbols (i.e., their shapes) of a given
domain. Each SRA uses an internal recognition algorithm to recognize all the
instances of a particular symbol in the sketch, and is able to exchange feed-
back messages with other SRAs in order to compute contextual information. In
particular, when an SRA recognizes a symbol S the belief that S is a correct
interpretation increases if other SRAs have recognized symbols that are related
with S.

The set of recognized symbols, together with the collected feedbacks, are
sent to the Sketch Interpreter Agent (SIA) that analyzes and solves the possible
arising conflicts, where a conflict occurs when two or more recognized shapes
share one or more strokes.

In the following we exemplify the behavior of the MAS on the UML Use
Case Diagram notation. This notation is characterized by the graphical symbols
depicted in Fig. 2 and a set of permitted relations between them. Such diagrams
are composed of use cases, actors, and connectors among them. In particular,
there is only one type of relationship that may occur between actors and use
cases; it is visualized like a solid line, named communication link. Four types of
relationships between use cases are supported by UML: communication, inclu-
sion, extension (visualized as the inclusion but with label <<extend>>), and
generalization. The only type of relationships that may hold among actors is
generalization.

Circle Shape for
Use Case symbol Stick Human for

Actor symbol

Line for
Communication

symbol

Open Arrow for
Include symbol

Triangle shaped
arrow for

Generalize symbol

Fig. 2. Use Case Diagram symbols.

Let us suppose that the user draws a Use Case diagram composed by an
actor that participates through a communication symbol to a use case, as shown

127

in Fig. 3. Each SRA in the MAS analyzes the sketch to recognize a particular
Use Case symbol. The Actor SRA recognizes actor A1 (surrounded by a dotted
box in the figure). The Communication SRA recognizes C1 and C2, where C1 is
part of the actor A1. Use Case SRA recognizes U1 and U2, while Include SRA
recognizes I1. Generalize and Extend SRAs do not recognize any symbol. For
each recognized symbol each SRA requests a feedback to the proper SRAs. In
particular, the following feedback messages are exchanged:

– Communication SRA obtains a feedback for C1 from Use Case SRA since it
recognized U1 (and vice versa);

– Include SRA obtains a feedback for I1 from Use Case SRA since it recognized
U1 (and vice versa);

– Communication SRA obtains a feedback for C2 from Actor SRA since it
recognized A1 (and vice versa);

– Use Case SRA obtains a feedback for U2 from Communication SRA since it
recognized C2 (and vice versa).

Finally, each SRA sends the recognized symbols and their feedback to the
SIA agent that has to detect and solve conflicts. In particular, A1, C1, and U1 are
in conflict, while U2 and C2 are considered “unambiguous symbols” because are
not in conflict. The unambiguous symbols and the collected feedback are used
by the SIA to solve the conflicts. In particular, the SIA applies the following
reasoning: A1 has a feedback from C2 that is unambiguous, while C1 and I1

have a feedback from U1, but C1, I1, and U1 are in conflict. Then A1 has been
correctly recognized, while C1 and U1 have been misrecognized. After the conflict
resolution the SIA interprets the sketch as an Actor A1, a Communication C2,
and a Use Case symbol U2. The SIA reasoning and the SRAs behavior are
detailed in [1].

3 An Open Society for Sketch Understanding

Fig. 4 shows the proposed society of agents and services for sketch understanding,
named AgentSketch. The society extends the MAS proposed in [1] to support the
building of flexible sketch-based applications that can be easily applied across
a variety of domains. Indeed, it can be configured to recognize different domain
languages and can be extended with new functionalities by adding new agents
to the society at run-time.

The features previously described are possible thanks to the proposed ar-
chitecture, composed by agents and web services, and to the use of suitable
ontologies and web service (WS) languages. The latter play a central role to en-
able agents developed by different organizations and with heterogeneous internal
behaviors to interact and to join the society at run-time.

We have identified four groups of agents to build the society:

– Symbol Recognition Group: Agents belonging to this group, namely
Symbol Recognizer Agents (SRAs), are able to recognize a particular domain

128

User Sketch The sketch contains an
Actor, a Communication,

and a Use Case
SIA

U2

Use Case SRA

U1

Link SRA

C1
C2

Include SRA

I1

Actor SRA

A1

Extend SRA

Generalize SRA

Fig. 3. Use Case diagram interpretation.

symbol and to collaborate with other SRAs in order to obtain contextual
information on their recognized symbols. Each SRA interacts with a Shape
Recognizer Web Service to recognize a symbol.

– Sketch Interpretation Group: Agents that belong to this group, namely
Sketch Interpreter Agents (SIAs), are able to coordinate the recognition pro-
cess of a set of SRAs by reasoning on the recognized symbols and elaborating
an interpretation of the whole sketch.

– Domain Expert Group: A Domain Expert Agent (DEA) is able to reason
on the sketch interpretations provided by SIAs to face a domain specific task.
For example, a DEA could support the user to correctly design circuits by
reasoning on the diagrams representing them. Another DEA could be able
to reason on Use Case diagrams to help the user to enhance their clarity.

– Intelligent Interface Group: Intelligent Interface Agents (IIAs) are able
to interact with the user in order to enable him/her to draw a diagrammatic
sketch and to support him/her in solving a particular task working on the
sketch interpretation. An IIA is designed to work on a particular domain
language and is customized for a particular purpose. Each IIA collaborates
with a SIA to obtain the interpretation of the user sketch and with one or
more DEAs to perform some tasks on a previously interpreted sketch.

In order to support agent interactions we have included in our architecture
two services, the “Agent Directory Service” and the “Ontology Agent Service” in-
troduced by the “Abstract Architecture Specification” [3] and by the “Ontology
Service Specification” [4], respectively.

An agent uses the Agent Directory Service to register itself and the services
that it is able to provide in the “Agent Directory”. Moreover, an agent queries

129

Agent Directory
 Service

Sketch Interpretion Group

Intelligent
Interface

Domain Expert
Group

Generalize
Recognizer

Actor
Recognizer

House
Recognizer

End State
Recognizer

Use Case
Interpreter

Finite State
Machine

Interpreter

Building Design
Interpreter

Software Design
Interface

Building Design
Interface

Learning FSM
Interface

Safety Building
Interface

Safety Rule
Checker

Use Case
prompter

Learner
Evaluator

Link
Recognizer

Symbol Recognition Group

Square
Recognizer

WS

Triangle
Recognizer

WS
Circle

Recognizer
WS

Rectangle
Recognizer

WS

Service
Broker

Ontology Agent
Service

OKB

Web
Service

Fig. 4. The AgentSketch society architecture.

the Agent Directory to find other agents able to provide the services that it
needs.

We have included in our framework a shared ontological knowledge base,
namely AgentSketch OKB, to enable agents to agree on message semantics and
service purposes. The Ontology Agent Service supports our community of agents
providing services to discover and browse the ontology, and to add instances to
the ontology concepts. The OKB will be described in Section 3.1.

Finally, a set of Web Services support SRAs to recognize hand-drawn shapes
by offering suitable shape recognition implementations. Agents can find these
services through the “Service Broker” also included in our society. Both the
Agent Directory and the Service Broker enable agents to discover services, but
while the first is suitable to contain agent’s information (name, description,
interaction protocols) and is used by all the agents, the latter is suitable to
contain WSs information (address, WSDL description, and so on) and is used
only by SRAs. The WSs of AgentSketch are detailed in Section 5.

The AgentSketch society depicted in Fig. 4 includes WSs able to recognize
some basic shapes (i.e., square, arrow, circle, and so on), SRAs able to recognize
symbols (i.e., Actor, Generalize, End State, and so on), SIAs able to interpret
sketch belonging to different domain languages (i.e., Use Case, Finite State Ma-
chine, and so on), IIAs useful for different tasks (i.e., Software Design, Building
Design, Learning), and finally, DEA able to furnish domain-specific services (i.e.,
prompt hints to enhance a Use Case, check if a building design satisfies a set of

130

security constraints, check if a Use Case diagram is correct for learning purposes).
New agents can be added at run-time to increase the society capabilities.

3.1 AgentSketch Ontological Knowledge Base

As stated in [5] to become a member of a society an agent must agree to adhere
to the constraints of the system, and in return the agent can benefit from the
other members of the society, e.g., their knowledge or services. When an agent
enters in the AgentSketch society it must agree to use the AgentSketch OKB
to properly communicate with other agents and to understand the services they
provide. AgentSketch OKB is shown in Fig. 5.

Concept

Language Symbol

 respect a

Shape

has a is composed
by

Stroke

is composed by

Point

Arrow Triangle Human House …

Genealogical
Tree

FSM UML
UseCase

…

NearParallelAbove …

applies to

Geometrical
Relations

EllipseArcLine

Service

Safety
Rule

Checking

Actor
Recognition

Use Case
Interpretation …

Class

Legend
B inherits from A

BA BA

Relation from A to B

Sketch

belongs to

Feedback Conflict

Fig. 5. AgentSketch ontological knowledge base.

Since in AgentSketch society the recognition of a single shape is performed
by a single agent, the ontology does not contain low-level concepts about shape
recognition, such as shape structure, aggregate of shapes, shape features, and so
on. Moreover, the agents do not discuss about their intentions or goals (intentions
and goals of each kind of agent are implicitly defined by the services they offer
as detailed in the following) so these concepts are not modeled in the ontology.

A common issue is that usually an agent also has an internal ontology used
to represent its knowledge and to perform reasoning. In order to use the inter-
nal ontology and the shared ontology in a consistent way the agent needs to
semantically relate its internal ontology with the shared one. In literature many
general approaches for ontology mapping are available [6].

In AgentSketch OKB the class Concept acts just as the ontology root: all
other classes represent concepts. The class Service represents a service offered
by an agent. Example of services are: to recognize a particular symbol, to inter-
pret a sketch belonging to a given language, to check if a diagrammatic sketch

131

satisfies the language constraints, to suggest users a sketch re-arrangement, and
so on. The Sketch class represents a diagrammatic hand-drawn sketch, i.e., a
diagram belonging to a particular language. A Language represents a visual do-
main language and can be described in terms of symbols and rules (i.e., UML
Use Case, Genealogy Trees, and so on). In particular, a Language is composed
of a set of symbols, while the rules define allowed relationships between sym-
bols. A Symbol belongs to a particular Language and has a particular Shape.
For example, the Include symbol belongs to the UML use case diagrams and its
shape is an Arrow. A Stroke represents a user stroke (or a segment of it) and
it is composed of a point chain. Geometrical relations apply to symbols, shapes,
strokes, and points. Above, Under, LeftOf, Parallel, Near are instances of geo-
metrical relations. The Feedback concept represents a feedback sent by an SRA
to another about symbol recognition in order to compute contextual informa-
tion. The Conflict concept represents a conflict between two or more recognized
symbol interpretations.

3.2 Symbol Recognition and Sketch Interpretation Groups

An SRA is designed to interact with a Shape Recognizer WS for recognizing
a particular domain symbol and to collaborate with other SRAs to compute
contextual information (feedback exchange). In particular, the WS includes an
algorithm to recognize a shape, while the SRA is able to handle the recognized
shape as a domain symbol extracting the meaningful features and interacting
with other agents to obtain the symbol context. Considering for example the
use case diagrams, the SRA devoted to recognize the Include symbol interacts
with the WS providing the shape recognition service for the Arrow shape, and
collaborates with the SRA devoted to recognize the Use Case symbol.

The role of SIAs is to interpret diagrammatic hand-drawn sketches according
to a domain language. The main task of the SIA is to interact with a set of SRAs,
to collect their recognized symbols, and to build a coherent sketch interpretation
solving the arising conflicts. When a SIA enters in the AgentSketch society it
queries the Agent Directory and the OKB to find the SRAs able to recognize
the symbols of the domain language. For each SRA it retrieves, from the agent
directory, the AIP that it has to follow in order to obtain the service. When
the SIA has found the properly SRAs it registers to the Agent Directory and
advertises the domain language interpretation service, with the AIP to follow,
that it is able to provide. Finally, the SIA browses the OKB to find the language
it is able to recognize, if not found then it is added to the instances of the
Language concept and the symbols to the instances of the Symbol concept.
Using the OKB, the agents can understand the language that the SIA is able to
recognize and the symbols that belong to this language.

To obtain the SRA service the SIA has to follows the AIP depicted in Fig.
6 and represented using AUML [5]. The first message sent by the SIA is a
request containing: a sketch identifier sk(id), the set of SRAs for the feedback
exchange relatedSRA(sr), and the geometrical relations symb rel(r) that are
allowed between the symbol recognized by the SRA and the shapes recognized by

132

the related SRAs. The geometrical relations are extracted by the language rules
about symbols relationships. As an example, from the rule “a Communication
symbol can be connected to an Actor symbol” we extract the relation “the
bounding box of an actor symbol can be near the end or the start point of a
Communication symbol”. In order to exchange feedback SRA must be able to
check these geometric relations starting from the shape recognized by the WS.
The SRA can autonomously decide (outer alternative fragment) to provide the
service (accept(sk(id))) or not (reject(sk(id))) (e.g., based on the amount of
sketches handled at that time by the SRA). If the request is accepted the loop
fragment is executed until the protocol ends. In the loop three cases can happen
(inner alternative fragment):

1. The SIA sends a message, inform(“strokes(set), sketch(id))”), to inform
the SRA that the user has drawn a set of strokes that has to be analyzed.

2. The SIA sends a message to the SRA, request(“recognized shapes, sk(id)”),
to request the set of recognized shapes, and the SRA replies sending the
shapes with the message inform(“recognized shapes(set), sk(id))”).

3. The SIA informs the SRA that the user has terminated the drawing by
sending the message inform(“sketch finished, sk(id)”).

sd
ShapeRecognition

SIA:
sketchInterpreter

loop

request
 (“sk(id), relatedSRA(sr), symb_rel(r)”)

SRA:
sketchRecognizer

alternative
inform

(“strokes(set), sketch(id))”)

request
(“recognized_shapes, sk(id)”)

 inform
(“recognized_shapes(set), sk(id))”)

inform
 (“sketch_finished, sk(id)”)

alternative

accept (“sk(id)”)

reject (“sk(id)”)

 inform
(“recognized_shapes(set), sk(id))”)

Fig. 6. AUML interaction protocol for the recognition services provided by an
SRA.

When a new SRA joins the AgentSketch society it registers to the Agent
Directory Service its description (name, address, and so on) and advertises its

133

recognition service. The SRA adds a standardized textual representation (de-
tailed in Section 4) of the AIP shown in Fig. 6 to its service description. The
SRA also adds to the service description the name of the symbol that it is able
to recognize. Finally, the SRA browse the AgentSketch OKB and, if it is not
present, add the symbol that it is able to recognize to the instances of the Sym-
bol concept. Using the OKB another agent can understand the symbol that the
SRA is able to recognize.

3.3 Intelligent Interface Agent Group

The main goal of an Intelligent Interface Agent (IIA) is to handle complex in-
teractions with the user in order to enable him/her to draw a diagrammatic
sketch and to present him/her feedbacks on the sketch interpretation process
(performed by a SIA). Moreover, the IIA can interact with one or more DEA to
offer to the user some domain specific services.

To find a SIA able to interpret a given domain language the IIA queries the
Agent Directory and the OKB. The SIA retrieves the AIP published by the SIA
and follows it to obtain the service. The IIA provides the SIA with the needed
information about the sketch (drawn stroke and their attributes, such as spatial
coordinates). Moreover, the suitable DEAs are found queering the Agent Direc-
tory. An IIA also offers to the users “Intelligent Symbol Manipulations” features.
This features support users to easily modify the sketch (for example moving a
symbol S while the system automatically re-arrange the symbols related to it)
and prevent the violations of the language constraints.

3.4 Domain Expert Agent Group

A DEA is an agent designed to work on the model represented by a diagrammatic
sketch (sketch semantic). For example, a DEA could be designed to analyze a
diagram representing a building in order to check if some safety rules are satisfied
and to prompt some suggestions. The services offered by DEAs are domain-
specific and the Agent Interaction Protocols to follow to obtain these services
can be very different. However, each DEA registers its provided service and the
AIP to obtain it in the Agent Directory.

3.5 An agent society for Use Case Diagram understanding and
reasoning

In this section we exemplify the agent society behavior of the intelligent sketch-
based application for designing use case diagrams.

Fig. 7 shows the components composing the society and some agent interac-
tions of an application for use case design. In particular, for each shape repre-
senting a use case diagram symbol a suitable WS must be available, and for each
symbol an SRA must be added to the society. Each SRA searches the suitable
WS by querying the Service Broker (arrow 1), and then registers itself in the

134

Agent Directory (arrow 2). A use case diagram SIA has also to be added to the
AgentSketch society. This SIA queries the Agent Directory for finding the SRAs
able to recognize the use case diagram symbols and for registering its interpre-
tation service (arrows 3 and 4). Finally, an IIA handles the user interactions
by finding the suitable SIA through the Agent Directory (arrow 5). If the user
needs advanced domain specific services, one or more DEAs can be added to the
society, even at run-time, and the IIA can find them using the Agent Directory
(arrow 6).

Agent Directory
 Service

Sketch Interpretation
Group

Intelligent Interface Group Domain Expert
Group

Use Case
Recognizer

Actor
Recognizer Generalize

Recognizer

Use Case
Interpreter

Software Design
Interface

Use Case
prompter

Link
Recognizer

Stick
Recognition

WS

Arrow
Recognition

WS

Circle
Recognition

WS

Line
Recognition

WS

Shape Recognition Group

Service
Broker

1

2

5

3

4 Ontology Agent
 Service

6

Fig. 7. An agent society for use case diagram recognition-based application.

4 Enabling Agents to Exchange Agent Interaction
Protocols

As detailed in the previous sections new agents joining AgentSketch society
need to interact with other agents in order to request their services. This can be
accomplished only if the agent that need the services follow the AIP associated
to them.

Many AOSE methodologies (for example GAIA [7]) take AIP as their starting
point to design MASs. Indeed, interacting agents are implemented according to
the designed AIPs. AgentSketch society enables agent development at different
times and from different development groups by exploiting the advertisement of
offered services, and related AIPs to follow in order to obtain these services. In
particular, agents can find a service and the AIP to follow by looking into the
agent directory. Obviously, the AIPs have to be represented in a standardized
unambiguous way, so that the agents can easily handle. A widespread visual

135

notation used to represent and design AIPs is AUML interaction diagrams [8],
an extension of UML sequence diagrams. AUML diagrams are visual diagrams
conceived to design MAS by humans and are not suitable for representing AIP
in a precise computer processable way. In order to be processed in an automatic
way by computers, textual notations are still widely considered to have some
significant advantages.

In [9] we have proposed to represent AIPs using a widespread standard
textual notation designed for Web Services: the Web Services Business Pro-
cess Execution Language [10]. WS-BPEL is layered on top of WSDL [11] and
provides a language for the formal specification of business protocols describ-
ing the mutually visible message exchange of each of the parties involved in
the protocol, without revealing their internal behavior. In particular, we have
detailed the translation process from AUML to WS-BPEL and we have real-
ized a AUML2WS-BPEL Translator1, to obtain the automatic translation of an
AUML AIP to a WS-BPEL document. In our agent society the AUML2WS-
BPEL Translator, available as a set of Java library, can be used by an agent
providing a service (i.e., an SRA, a SIA, or a DEA) to generate the WSBPEL
representation of the AIP that an agent, that needs the service, namely service
consumer has to follow.

The AUML2WS-BPEL Translator can also be used to obtain a Prolog rep-
resentation of an AIP represented in BPEL. The AIP Prolog representation, as
described in [9], can be used to semi-automatically generate the programming
code needed by a service consumer agent to execute the AIP. The generated
code can be executed in JADE2 by means of the DCaseLP [12] libraries.

In the AgentSketch society, an agent that needs a service can use the trans-
lator to generate the suitable code to handle the AIP published in the Agent
Directory by the service provider. For example, an IIA can find a service offered
by a DEA in the Directory Agent and can generate the code needed to handle
it.

Fig. 8 summarizes the AIP exchange process. The service provider generates
the WS-BPEL representation of the AIP associated to a service and stores it
in the Agent Directory. The service consumer looks for the service in the Agent
Directory and retrieves the BPEL representation of the AIP to follow.

Agent Directory
 Service

Service
Provider

Service
AIP WS-BPEL
representation

Service
AIP WS-BPEL
representation Service

Consumer

Fig. 8. AIP exchange process.

1 AUML2WSBPEL Translator, http://www.disi.unige.it/person/MascardiV/

Software/AUML2WS-BPEL.html
2 http://jade.tilab.com/

136

5 Shape Recognizer Web Services

The implementation of Shape Recognizers (SR) as WSs allows us to integrate
in AgentSketch shape recognizers implemented by anyone and in any language,
physically stored anywhere, running on any platform, and replaceable with a
minimal effort. The use of WSs is also motivated by the low quantity and the
simple structure of data to be exchanged between SR and SRA and by the strong
availability of standards, design patterns, and development tools. Moreover, the
results obtained in the composition of WSs could be exploited to realize complex
SRs as composition of simple ones.

Each Shape Recognizer Web Service can internally be based on a different
shape recognition approach (for example, Ladder [13] and Sketch Grammars [14]
represent suitable choices), however, all WSs must expose the same interface.

The operations that each WS has to expose are described in the following in
a “Java like” style:

– void start new sketch(Integer sketch id)
This operation is used to inform the SR that a new sketch, identified by a
number, namely the sketch id, is started. The SR initializes itself to handle
the shape recognition associated with the sketch and allocates all the needed
resources.

– void input strokes(Vector strokes info, Integer sketch id)
This operation is used to give a set of strokes in input to the SR. The strokes
are associated to a sketch identified by the sketch id parameter. Each stroke
is represented by an element of the Vector strokes info where each element
contains the following fields:
• Integer stroke id: represents the unique id in a sketch associated to the

stroke
• V ector points: represents the set of key points that characterize the

stroke. Each point is represented by its position (x, y coordinates) and
by its drawn time t.

The input strokes operation is called every time the user adds new strokes
to the sketch or modify some strokes (for example moving or resizing them).
If the SR receives new information about previously known strokes (it can
happen if the user moves, resize or modify them), it updates the information
associated to it.

– Vector input ns get rsymbols(Vector strokes info, Integer sketch id)
This operation is similar to the previous one, but it is used to give a set of
strokes in input to the SR and at the same time to ask the set of recog-
nized symbols. The set of recognized symbol is represented by a Vector of
recognized symbol info where each element represents a recognized symbol
and it is composed by the following fields:
• Integer recognized symbol id: the unique id of the symbol;
• String recognized symbol name: the recognized symbol name;
• V ector stroke id vector: a vector containing all the strokes id used to

recognize the symbol;

137

• ShapeGeometricAttributes spg: each shape has associated a set of at-
tributes computed by the SR and defined in the sketch ontology.

– void delete input strokes(Vector strokes id, Integer sketch id)
This operation is invoked when the user deletes some strokes (strokes id)
from the sketch (sketch id).

– Vector get recognized symbol(Integer sketch id)
This operations is used to ask to the SR the set of recognized symbol for a
given sketch sketch id. The output is the same of the input ns get rsymbols
operation.

– void end sketch(Integer sketch id)
This operation is used to inform the SR that a sketch is finished and all the
resource associated with it can be released.

As described in Section 3, WSs advertise agents about their capabilities by means
of a Service Broker.

6 Related Work and Conclusions

In the last two decades several approaches have been proposed for the recognition
of freehand drawings but few of them exploit agent technology. QuickSet uses a
suite of agents for multimodal human-computer communication [15], whereas the
approach proposed in [16] uses a system for graphic unit recognition, where sin-
gular agents may specialize in graphic unit-recognition, and multi-agent systems
can address problems of ambiguity through negotiation mechanisms. EsQUIsE
is an interactive tool for free-hand sketches to support early architectural design
[17]. The same system has been extended with the possibility of interpreting vo-
cal information [18]. In particular, the graphical inputs are interpreted by either
rule-based agents or model-based agents, while the spoken inputs are interpreted
by model-based vocal agents.

Regarding the use of ontologies, Zheng and Sun proposed in [19] a sketch
understanding process driven by domain knowledge bases. Their framework al-
lows users to easily adapt the hierarchical understanding process to any domain
through the definition of visual concept ontologies.

In this paper we have not concentrated on sketch recognition issues (the
suitability and the effectiveness of the agent-based approach for sketch recogni-
tion, which is the backbone of the current proposal, have already been discussed
in [2]) but we have focused to the flexibility issues of sketch recognition-based
system. In particular, we have presented a framework that combines Web Ser-
vices and Ontologies, for building open and dynamic agent societies aimed at
hand-drawn sketch recognition. Ontologies enable agents to agree on message
semantics and service purposes, standard web services languages to represent
agent interaction protocols in a suitable way to be exchanged and handled by
agents, and WSs to expose low-level recognition services. The flexibility of the
agent organization and interactions allows us to recognize new languages and to
realize new sketch-based applications changing the interactions between existing
agents and/or adding new agents at run-time.

138

References

1. Casella, G., Costagliola, G., Deufemia, V., Martelli, M., Mascardi, V.: An agent-
based framework for context-driven interpretation of symbols in diagrammatic
sketches. In: Proc. of VL/HCC 06, Brighton, UK, IEEE CS Press (2006) 73–80

2. Casella, G., Deufemia, V., Mascardi, V., Costagliola, G., Martelli, M.: An agent-
based framework for sketched symbols intepretation. (To appear in Journal of
Visual Languages & Computing.)

3. Foundation for Intelligent Physical Agents: FIPA abstract architecture specifica-
tion. http://www.fipa.org/specs/fipa00001/SC00001L.html (2002)

4. Foundation for Intelligent Physical Agents: FIPA ontology service specification.
http://www.fipa.org/specs/fipa00086/XC00086D.html (2001)

5. Walton, C.: Agency and the Semantic Web. Oxford University Press (2006)
6. Choi, N., Song, I.Y., Han, H.: A survey on ontology mapping. ACM SIGMOD

Record 35(3) (2006) 34–41
7. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia methodology for agent-

oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems 3(3) (2000) 285–312

8. Huget, M.P., Odell, J.: Representing agent interaction protocols with agent UML.
In: Proc. of AAMAS’04, IEEE CS Press (2006) 1244–1245

9. Casella, G., Mascardi, V.: Intelligent agents that reason about web services: a logic
programming approach. In: Proc. of International Workshop on Applications of
Logic Program. in the Semantic Web and Semantic Web Services, Seattle, WA,
USA (2006) 55–70

10. Arkin, A., Askary, S., Bloch, B., Curbera, F., Goland, Y., Kartha, N., Liu, C.K.,
Thatte, S., Yendluri, P., Yiu, A., eds.: Web Services Business Process Execution
Language (WS-BPEL). Version 2.0. (2005)

11. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1. W3C Note. (2001)

12. Gungui, I., Martelli, M., Mascardi, V.: DCaseLP: a prototyping environment for
multilingual agent systems. Technical Report DISI-TR-05-20, DISI, Univ. of Gen-
ova, Italy (2005)

13. Hammond, T., Davis, R.: LADDER, A sketching language for user interface de-
velopers. Computers & Graphics 29(4) (2005) 518–532

14. Costagliola, G., Deufemia, V., Risi, M.: Sketch Grammars: A formalism for de-
scribing and recognizing diagrammatic sketch languages. In: Proc. of ICDAR’05,
IEEE Press (2005) 1226–1230

15. Cohen, P.R., Johnston, M., McGee, D., Smith, I., Pittman, J., Chen, L., Clow, J.:
Multimodal interaction for distributed interactive simulation. In: Proc. of IAAI’97,
AAAI Press (1997) 978–985

16. Achten, H.H., Jessurun, A.J.: An agent framework for recognition of graphic units
in drawings. In: Proc. of eCAADe’02, Warsaw (2002) 246–253

17. Juchmes, R., Leclercq, P., Azar, S.: A freehand-sketch environment for architec-
tural design supported by a multi-agent system. Computers & Graphics 29(6)
(2005) 905–915

18. Azar, S., Couvreury, L., Delfosse, V., Jaspartz, B., Boulanger, C.: An agent-based
multimodal interface for sketch interpretation. In: Proc. of MMSP-06, British
Columbia, Canada (2006)

19. Zheng, W.T., Sun, Z.X.: Knowledge-based hierarchical sketch understanding. In:
Proc. of ICMLC’5. (2005) 2838–2843

139

Extending the FIPA Interoperability to Prevent
Cooperative Banking Frauds

Mauricio Paletta1 and Pilar Herrero2

1 Departamento de Ciencia y Tecnoloǵıa.
Universidad Nacional Experimental de Guayana.

Av. Atlántico. Ciudad Guayana. Venezuela.
2 Facultad de Informática. Universidad Politécnica de Madrid.

Campus de Montegancedo
S/N. 28.660 Boadilla del Monte. Madrid. Spain.

Abstract. Electronic bank transactions are very common today. Ser-
vices given by an Automatic Teller Machine (ATM), for example, are
very popular and widely used by bank clients. Unfortunately, in the
same way as the use of these devices is increasing, the proliferation of
different frauds to try to violate these systems to steal user’s money is
also increasing. Sometimes, the modus operandi used by the delinquents
depends on different factors, such as the country or the city where fraud
is committed or, as in the case of ATMs, the model or location of these
devices. Since the detection of these modus operandi is not easy and they
could be different from a bank institution to another, having both an en-
vironment capable of following up the swindler agents learning processes
and a way to prevent the cooperation between these agents to share
the learned knowledge, would be very useful to discover different modus
operandi before crimes are committed. In this paper, a framework de-
signed to follow up the swindlers’ agents learning process and to share
the knowledge between the agents is presented. This framework is based
on the FIPA (Foundation for Intelligent Physical Agents) specifications
and it emphasizes on the swindler agents learning process to fulfil the
human-like agent behaviour and a realistic interaction with the environ-
ment.

1 Motivation

Electronic banking frauds have attracted significant international attention, since
individuals and organizations have lost billions of dollars worldwide. Electronic
banking speeds up transactions and creates new ”promising” services, altering
banking operations, and dramatically expanding the reach of financial institu-
tions. Services given by an Automatic Teller Machine (ATM), for example, are
very popular and widely used by bank clients. In fact, this kind of transaction
is leading the current payment system.

Given the inherent nature of electronic banking in eliminating paper doc-
umentation and traditional identity verification processes, a new dimensional

140

amount of risky situations have arisen. The proliferation of different frauds to
try to violate these systems to steal user’s money is also increasing.

Bank institutions are continuously receiving claims from victims of this type
of crimes and the only thing they can do is to inform their employees and clients
about one particular modus operandi once it is discovered.

Detection of procedures to commit these crimes is not easy and once it is
discovered, criminals find another more skilful way to proceed. Sometimes, the
modus operandi involves different people and techniques making them more
difficult to detect. These also could depend on different factors: the country or
city where the fraud is committed, the model or location of an ATM, etc. This
hinders bank institutions to inform their employees and clients about crimes on
time before they can be committed.

In this sense, having an environment capable of following up the swindler
agents learning processes and to prevent the cooperation among these agents,
with the purpose to share learned knowledge, would be very useful for bank insti-
tutions, discovering, for example, how criminals improve their modus operandi
day by day and how they ”create” new techniques and schemes to avoid the
bank systems devoted to detect this kind of frauds.

If each bank institution could have one of these specialized agents which
have learned the modus operandi from previous committed frauds, and all these
agents could communicate among each other, then institutions can share learned
knowledge and have more chance to avoid crimes. This is explained in more detail
in this paper.

FIPAL (a FIPA agent-based framework designed to follow up the swindlers’
intelligent agents Learning process) is also presented in this paper. It is based on
the Foundation for Intelligent Physical Agents (FIPA)1 specifications and it em-
phasizes on the swindler agents learning process to fulfil the human-like agent be-
haviour and a realistic interaction with the environment. In order to accomplish
these necessities, the FIPAL-KBEL (Knowledge Base Experience Language for
FIPAL), has been created as a new XML language based approach. This paper
also describes how the FIPAL-KBEL language allows a flexible representation
of the knowledge as well as a more effective learning process.

2 Related Work

The specifications of the Foundation for Intelligent Physical Agents (FIPA) con-
stitute an interoperability model covering all elements from the agent architec-
ture to the application domains. In this model, the agent system interoperability
is based on the use of a common Agent Communication Language (ACL) [5] and
supported by an Abstract Architecture [6] which can be used to abstract the in-
ternal architecture of each agent.

The FIPA abstract architecture provides some mechanisms that could be
used to enact the communication process among heterogeneous agent systems

1 http://www.fipa.org/

141

to achieving interoperability in message representation and transportation. How-
ever, the technological support provided by FIPA alone is not sufficient to achieve
interoperability. Agents also need to have the knowledge to contextualize their
acts of communication within the multiagent environment in which they take
place [15].

Extensions of the FIPA specifications for intelligent agents could be seen in
some research works, such as in [15] where the authors proposed an approach
to extend the FIPA interoperability model to deal with agent social issues, like
social requirements on agent conversations and communication languages. Ex-
amples of FIPA compliance, on the other hand, can be seen in other works, such
as in [7] where Lynden et al introduced LEAF, a software toolkit for developing
learning multiagent systems, Pokahr et al [12] present Jadex, a software frame-
work for the creation of goal-oriented agents based on the FIPA specifications
and following the BDI (Belief-Desire-Intention) [14].

By the other side, a no less important factor is the one related to the in-
telligent learning process. Learning plays a fundamental role in many of human
activities since experience, including both achievements and errors [2]. It seems
that this is the fundamental property that allows humans to adjust themselves
to the different changes in the environment [1], [2], [3].

However, none of the previous authors has focused on the main objective
from the perspective of this paper: to design and develop an open and flexible
framework based on the learning process to be applied to the electronic banking
fraud.

In the next section, the way in which an intelligent agent has been structured
will be presented, by means of an open and flexible architecture using the FIPA
specifications and based on the Learning and environment interaction processes
(FIPAL). FIPAL is the evolution of a previous architecture called IVAL (An
Open and Flexible Architecture based on the IVA Learning Process) which can
be reviewed in detail in [10] and [11].

3 A FIPA extension designed to follow up the swindlers’
agents learning process

3.1 The FIPAL structure

According to the FIPA in [6], the existence of a FIPA Abstract Architecture does
not prohibit the introduction of elements useful to make a good agent system; it
merely sets out the minimum required elements. Based on this affirmation and
considering the BDI fundamentals, the FIPAL architecture has been designed
as it can be seen in Fig. 1. There are five service modules:

1. The Service Directory Service (SDS): its basic role is to provide a consistent
means by which agents and services can discover services [6].

2. The Social Issue Service (SIS): it contains those services needed to achieve
the interaction with the environment based on stimuli reception and acting
(see Sect. 3.2 for more detail).

142

3. The Learning Service (TLS): it contains a knowledge repository and those
services needed to achieve the knowledge reasoning (see Sect. 3.3 for more
detail).

4. The Communication Service (TCS): it contains the aspects of message com-
munication between agents, as the message structure, message representation
and message transport (see Sect. 4 for more detail).

5. The Control of Services (COS): it synchronizes the execution of the remain-
der elements and has the algorithms to react, deliberate and control the
plans of the agent. It represents the FIPAL agent core since all the inter-
action among the other four elements passes through it. Related plans are
represented using a kind of Teleo-Reactive (T-R) sequence [9].

Fig. 1: The FIPAL structure

Following the FIPA specifications, the descriptions of all these services are
registered in the Service Directory element inside the SDS module.

3.2 The FIPAL social issues

As it could be seen previously, the FIPAL structure is endowed with social issues
abilities provided by the corresponding service module. One of the fundamental
roles of this module is to interact with the environment. In this sense, a FIPAL
agent has six components or set of services each of them with the capabilities
to interchange information with the environment in order to receive a stimulus
and give an answer according to the kind of interaction the agent is doing.

143

Five of the six kinds of interaction or social issues correspond to the human
being senses. The other remaining social aspect corresponds with a service ca-
pable to represent facial expression. In this sense, a FIPAL agent tries to follow
a social behaviour in the same way as the human beings do it. This six set of
services are the following:

1. Sound, to interact with their surroundings by means of hearing (listening
and speaking). The services associated to this component are the following:
– Listening(): start listening from the environment in order to receive

auditory stimuli; with this service the FIPAL agent acquires the hearing
ability.

– StopListening(): stop receiving auditory stimuli from the environment.
– Talking(message): with this service the FIPAL agent can act saying an

oral message to the environment.
2. See, to perceive the environment by means of the sight. The services associ-

ated are the following:
– Seeing(): start seeing from the environment in order to receive visual

stimuli; with this service the FIPAL agent acquires the visual ability.
– StopSeeing(): stop receiving visual stimuli from the environment.
– SeeFaceExpression(): with this service the FIPAL agent can act observ-

ing the facial expression of the most nearby agent.
3. Touch, to interact with their surroundings by means of the touch (touching

and manipulating), with the following services:
– Touching(): start touching objects into the environment in order to re-

ceive sense of touch stimuli; with this service the FIPAL agent acquires
the sense of touch ability.

– StopTouching(): stop receiving sense of touch stimuli from the environ-
ment.

– Taking(): with this service the FIPAL agent can act taking the most
nearby object.

– Putting(object): with this service the FIPAL agent can act putting into
the environment the object indicated.

4. Smell, to interact with their surroundings by means of the smell by using
the following services:
– Smelling(): start smelling from the environment in order to receive ol-

factory stimuli; with this service the FIPAL agent acquires the ability to
smell.

– StopSmelling(): stop receiving olfactory stimuli from the environment.
5. Taste, to interact with their surroundings by means of the taste by using the

following services:
– Tasting(): start tasting from the environment in order to receive taste

stimuli; with this service the FIPAL agent acquires the taste ability.
– StopTesting(): stop receiving taste stimuli from the environment.

6. Face, to represent and interpret the facial expressions such as happiness,
fright, fears, etc.
– Setting(expression): with this service the FIPAL agent can act by setting

the indicated facial expression.

144

By the other side, FIPAL pays a lot of attention to the learning topic, in-
cluding all an agent has to learn, how it should learn it and how knowledge
should be handled. This is the main reason that has motivated the definition
of a new XML-based approach for knowledge representation, known as FIPAL-
KBEL. The following section describes how FIPAL-KBEL is used to represent
the knowledge and how the learning process is carried out.

3.3 The knowledge representation and learning process in FIPAL

The FIPAL basic architecture is provided with learning abilities, thanks to the
corresponding Learning Service (Fig. 1). One of the fundamental purposes of
this service is to maintain the knowledge learned by the agent. In this sense, a
knowledge representation technique was necessary to achieve this objective.

Due to its simplicity and flexibility, XML2 (Extensible Markup Language)
has been used as the basic representation language for covering the FIPAL func-
tionalities, particularly knowledge representation. Since XML is a universal and
web-based data format, it is appropriate for an independent platform and world
wide use and has become a widely accepted standard data interchange technol-
ogy, so its general usability is guaranteed for the next years [4].

Based on the previous statements, FIPAL-KBEL (Knowledge Base Experi-
ence Language for FIPAL) has been designed to fulfill the requirements related
to knowledge representation. FIPAL-KBEL follows the rules representation [13]
and, for instance, it defines the requested labels to structure a knowledge rule.

Fig. 2: The FIPAL-KBEL document structure

Since the agent associated with the FIPAL architecture is acting according
to the received stimuli, the relation between what it is saw, heard, touched,
smelled or tasted and the given reactions needs to be represented and stored.
Any stimulus consists on a tuple <data, type> that represents the information
2 http://www.w3.org/XML/

145

coming from the environment. The reaction of the agent consists on many exe-
cuted services with their corresponding parameters, if any; for example, in one
service associated with the ability of talking, the parameter must be the string
that the agent wants to say. Additionally, each service is accompanied by its
corresponding executed result or reaction. In this way, each service is given by
a pair <service name(p1, p2, · · ·, pn), result> where pi 1 ≤ i ≤ n, is the ith

parameter.
Fig. 2 can be reviewed to detail the labels of the FIPAL-KBEL document

structure. As it can be seen, FIPAL-KBEL represents each of this knowledge
rules inside the label ”<FIPAL-KBEL:Experience>”. Any rule has a different
identification number, ”id” attribute, inside this label and it is used to indicate
the corresponding sequence into the knowledge base. This is useful to follow
exactly what happened before and after the stimulus arrived. It is important to
highlight that the result of a service indicates whether not only the service was
executed properly, but also if it was appropriate or still unknown.

The reasoning process occurs when a new stimulus arrives and the agent
looks for an adequate answer; it consults the learning service component to
know whether there is any experience with the present state or stimulus. If a
knowledge rule associated with the received stimulus is found, all the services
identified in the rule with the appropriate result value are executed in the same
order they are executed when the same stimulus is received during the learning
process. Fig. 3 shows in detail this algorithm executed by the Control of Services
component.

Fig. 3: The FIPAL reasoning and learning general algorithm

If a different service is executed after the evaluation of the knowledge rule,
this new information is considered to reinforce or give feedback to the knowledge
according to what it was learned. This learning strategy continues until a new
stimulus is received. This means that all the services executed after a stimulus is
received and before a new stimulus arrives are taken in consideration to upgrade
the knowledge rule associated with the first stimulus. To better understand the
previous algorithm, Fig. 4 shows an UML collaborative diagram between the
elements that conform the FIPAL structure (Fig. 6 in section 5 shows the UML
class diagram related to these concepts).

146

Fig. 4: UML collaboration diagram of the FIPAL learning and reasoning general process

Next section describes the way in which the FIPAL agents can interact each
other to prevent banking frauds cooperatively.

4 The FIPAL interoperability to prevent cooperative
banking frauds

Supposing there is at least one FIPAL agent in any bank institution which is
learning the modus operandi used by the delinquents to commit the frauds in
this institution, and supposing that these FIPAL agents are connected among
each other (see Fig. 5), then the FIPAL agents can share the experience acquired
with the aim to detect the possible fraud on time before it can be committed.

Fig. 5: Cooperative banking frauds

In order to cooperate with each other, any agent structured with FIPAL
can respond to the service ”Consulting(stimulus)” which is associated with the
component Learning Service (see Fig. 1). The objective of this service is to find

147

an experience based on the given stimulus and, as it occurs with the rest of
services the agent can serve, the description of this service is registered in the
Service Directory element of the FIPAL structure.

Once the Communication Service of the agent receives the request of execut-
ing the service ”Consulting(stimulus)”, the Learning Service element looks for
an experience associated with the given stimulus by using the algorithm showed
in Fig. 3. If there is a knowledge rule associated with that stimulus, the agent
prepares an answer based on the services related to it. Only that services which
have the corresponding results with a set value indicating if its execution is or
not appropriate, will be considered for the answer. This is useful to inform the
agent who sent the request of the service what it is or not appropriate to do in
response to that stimulus.

A FIPAL agent can ask for help at anytime, particularly when it doesn’t have
any experience to an actual situation. Once the agent receives the answers from
other agents, if any, it can execute the services with an appropriated value in
their corresponding results and avoid executing services with an inappropriate
value. All this information is used for this agent to learn how must act in presence
of this stimulus in the future.

In order to achieve the communication among FIPAL agents, the FIPA ACL
abstract message structure was adopted to define the XML based language
FIPAL-VACL (Virtual Agent Communication Language for FIPAL). XML al-
lows agent developers to extend sensor or effectors classes with their own ACL if
they so desire, and the text basis of XML minimises functional coupling between
sensors and effectors of different agents [8].

A scenario in which it is possible to review the way a couple of FIPAL
agents can interact between each other to prevent banking frauds cooperatively
is described in the next section.

5 A case study: Cooperative Banking Frauds

It should be pointed out that this work is currently in progress and therefore
FIPAL will continue evolving. FIPAL is developing using C# programming lan-
guage and, at this moment, efforts have been concentrated on having an appro-
priated graphical interface for the IVA. Fig 6 shows a UML class diagram with
the concepts related to FIPAL and the relations among them. As it can be seen,
these concepts and relations are related to the FIPAL structure showed in Fig.
1.

Several scenarios have been raised with the aim of validating the FIPAL
interoperability described in the previous sections. The scenario presented in this
section corresponds to a simulation of real situation which has been happening
in Venezuela related to the Automatic Teller Machine (ATM) banking fraud.

The environment where the simulation is carried out is an ATM precinct with
a couple of machines: ATM-1 and ATM-2. There are three agents: the delinquent
D1, a second delinquent D2 and the client C1. The fraud is carried out because
while the client C1 is initiating the transaction in ATM-2, the delinquent D1,

148

who is using ATM-1, has programmed this ATM to intercept the transaction
of ATM-2 acting itself as if it were ATM-2. Then, D1 prevents C1 from using
ATM-2 pretending it does not work, while D2 is already finishing in ATM-1 the
transaction that C1 initiated in ATM-2.

Fig. 6: UML class diagram of the FIPAL concepts

The scenario described previously can be summarized through the following
steps:

1. C1 arrives to the ATM room while D1 is using the ATM-1 and the ATM-2
is free.

2. C1 is located in front of ATM-2. It introduces its card and its password while
D2 enters in the ATM room.

3. D2 is in the ATM-1 queue, behind D1; D1 moves towards C1 with a serious
facial gesture and tell him that the ATM he is intended to use (ATM-2)
counts the money but it will not be able to get the cash from the ATM (see
Fig. 7-a).

4. C1 reacts to D1’s comment by cancelling the transaction which he was car-
rying on.

5. Once C1 has given the order of cancelling the transaction in the ATM-2 and
it has waited for the confirmation of the cancellation, it decides to go to the
ATM-1.

6. D1’s transaction in ATM-1 is over and it moves towards the ATM-2; D2,
which was waiting behind D1, starts using ATM-1 and C1 places behind D2
to use the ATM-1 as soon as possible.

7. D1, with a warning facial expression, tells C1 that the ATM-2 is making a
transaction.

149

8. C1, with a worry expression, goes to the ATM-2 to cancel the transaction,
while D1 gets out from the ATM room (see Fig. 7-b).

9. C1 can not observe any kind of transaction movement in the ATM-2 and
therefore it decides to move again towards the ATM-1 where D2 is still
finishing its transaction before leaving the ATM room (see Fig. 7-c).

10. Once C1 is located again in front of ATM-1, it introduces its card, password
and the rest of the data to start a new transaction.

11. ATM-1 alerts to C1 that it has already taken out the maximum amount
permitted by the bank; C1 reads this message and realises of the fraud (see
Fig. 7-d).

With the aim of explaining better the simulation it is assumed that there
are two bank institutions: B1 and B2. In B1 the FIPAL agent associated to
the client C1 (for convenience, it will be used B1:C1 to identify this agent) has
learned the modus operandi previously described, but in B2 the agent associated
to C1 (B2:C1) doesn’t have any experience yet. The simulation is going to be
divided in two different parts: 1) the B1:C1’s learning process and 2) the B2:C1’s
learning process using the B1:C1’s experience. Both of parts are described by
means of a series of steps each of them with a brief description of the simulated
situation and the explanation of how the FIPAL architecture associated to C1
(B1:C1 or B2:C1) tackles this scene or step.

(a) Step 3 (b) Step 8

(c) Step 9 (d) Step 11

Fig. 7: Simulated situation of some steps of the scenario. The ATM-1 is the ATM on
the left side being used by D1 in (a); the ATM-2 is the ATM on the right side being
used by C1 in (a), (b) and (c); D2 is the woman

150

5.1 The B1:C1’s learning process

Step 1: C1 arrives to the ATM room while another client (D1) is using the
ATM-1 machine and the ATM-2 is free. FIPAL: The environment perception
starts once the B1:C1 agent executes the service ”Seeing()” from the See set
of services. In response, B1:C1 receives a set of visual stimuli associated with
the specific environment situation. In this case, the stimulus received would be
<”ATM-1 busy”, seen> and <”ATM-2 free”, seen>.

Step 2: C1 is located in front of ATM-2. It introduces its card and its pass-
word while another client (D2) enters in the ATM room. FIPAL: Once received
the stimuli and according to section 3.3, since B1:C1’s knowledge about the fraud
is initially null, B1:C1’s reasoning about the fraud is null and therefore, it decides
to ask for help by sending to the other FIPAL agents which are interconnecting
into the cooperation banking network, a FIPAL-VACL message with the request
of the service ”Consulting(<”ATM-2 free”, seen>)”. Since there are not FIPAL
agents with experience about this fraud, B1:C1 does not received any answer
and therefore it didn’t react to the delinquent intentions based on its experience;
B1:C1 keeps its main purpose ”to use the ATM machine as soon as possible”
(based on its plans) and therefore it tries to go to the ATM-2 and to use this
machine; B1:C1 executes the services ”Putting(card)” and ”Putting(password)”
from the Touch set of services. In this moment, B1:C1 starts learning about
what is happening, and as a consequence a knowledge rule is created based on
the last stimulus received as well as on the actions executed; B1:C1 updates the
knowledge with this new rule, modifying therefore the FIPAL-KBEL document.

Step 3: D2 is in the ATM-1 queue, behind D1; D1 moves towards C1 with a
serious facial gesture and tell him that the ATM he is intended to use (ATM-2)
counts the money but it will not be able to get the cash from the ATM. FIPAL:
As D2 is in the ATM-1 queue, B1:C1 realises that the environment has changed
and then it receives the stimulus: <”new client in ATM-1”, seen>; B1:C1 doesn’t
react to this environment; moreover, the oral message that D1 sends to B1:C1 is
captured by the Listen() service as an FIPAL-VACL message with the stimulus:
<”ATM does not give money”, listened>.

Step 4: C1 reacts to D1’s comment by cancelling the transaction which he
was carrying. FIPAL: Due to B1:C1 receives the stimulus <”ATM does not
give money”, listened> and it doesn’t have experience on this respect, it de-
cides to ask for help again following the same action as it is described in the
Step2 and, in this case the sent FIPAL-VACL message contains this solicitude:
”Consulting(<”ATM does not give money”, listened>)”. As it has no experi-
ence on this respect, B1:C1 reacts executing the service ”Setting(worry)” from
the Face set of services and C1’s expression change to ”worried”. In the same
way, B1:C1 reacts executing the service ”Putting(cancel)” from the Touch set of
services and the transaction is cancelled. B1:C1 updates its knowledge with this
new rule, modifying therefore the IVAL-KBEL document.

Step 5: Once C1 has given the order of cancelling the transaction in the
ATM-2 and it has waited for the confirmation of the cancellation, it decides
to go to the ATM-1. FIPAL: The See module realises that the environment

151

has changed and then it receives the stimulus: <”transaction cancelled”, seen>;
B1:C1 tries to makes a decision based on its experience but once more it has
no experience on this respect and once more it doesn’t receive any help from
another FIPAL agent.

Step 6: D1’s transaction in ATM-1 is over and it moves towards ATM-2;
D2, which was waiting behind D1, starts using ATM-1 and C1 places behind
D2 to use ATM-1 as soon as possible. FIPAL: B1:C1 realises the changes in
the environment and it receives the corresponding stimulus without carrying out
any reaction.

Step 7: D1, with a warning facial expression, says to C1 that the ATM-2
is making a transaction. FIPAL: The oral message that D1 sends to B1:C1
is captured by the Sound module with the stimulus: <”ATM-2 processing”,
listened>; B1:C1 tries to react with this new stimulus received.

Step 8: C1, with a worry expression, goes to the ATM-2 to cancel the trans-
action, while D1 gets out from the ATM room. FIPAL: B1:C1 reacts: 1) ex-
ecuting the ”Setting(worry)” service from the Face module (with the aim of
changing the face expression), 2) executing the ”Putting(cancel)” service from
the Touch set of services (with the aim of cancelling the transaction), 3) execut-
ing the ”Seeing()” service from the See module (with the aim of observing the
situation); B1:C1 introduces a new knowledge rule and updates its learning.

Step 9: C1 cannot observe any kind of transaction movement in ATM-2 and
therefore it decides to move again towards ATM-1 where D2 is still finishing its
transaction before leaving the ATM room. FIPAL: B1:C1 receives the stimulus
<”Insert card”, seen> from the See module and it reacts executing the service
”Setting(normal)” from Face; the agent goes back to ATM-1; B1:C1 introduces
a new knowledge rule and updates its learning.

Step 10: Once C1 is located again in front of ATM-1, it introduces its card,
password and the rest of the data to start a new transaction. FIPAL: See re-
ceives the stimulus <”ATM-1 free”, seen>; B1:C1 reacts executing the services:
”Putting(card)”, ”Putting(password)” and ”Putting(options)” from Touch; B1:C1
updates its learning with the new knowledge rule.

Step 11: ATM-1 alerts to C1 that it has already taken out the maximum
amount permitted by the bank; C1 reads this message and realises of the fraud.
FIPAL: See receives the stimulus <”it has withdrawn the maximum quantity of
money permitted for day”, seen>; B1:C1 reacts executing ”Setting(worry)” from
Face; B1:C1 introduces, again, a new knowledge rule and updates its learning.
At this moment it is important to mention that, due to the fact that the final
result for B1:C1 was negative, all the knowledge rules previous the last one and
in which the services results are not setting yet, must be changed in order to set
a non acceptable value into the corresponding services results.

5.2 The B2:C1’s learning process using the B1:C1’s experience

Step1: C1 arrives to the ATM room while D1 is using the ATM-1 and the ATM-2
is free. FIPAL: The environment perception starts once the B2:C1 agent ex-
ecutes the service ”Seeing()” from the See set of services. In response, B2:C1

152

receives a set of visual stimuli associated with the specific environment situa-
tion. In this case, the stimulus received would be <”ATM-1 busy”, seen> and
<”ATM-2 free”, seen>.

Step2: C1 (located in front of ATM-2) introduces its card and its password
while D2 enters in the ATM room. FIPAL: Once received the stimuli and ac-
cording to section 3.3, since B2:C1’s knowledge about the fraud is initially null,
B2:C1’s reasoning about the fraud is null and therefore, it decides to ask for help
by sending to the other FIPAL agents which are interconnecting into the cooper-
ation banking network, a FIPAL-VACL message with the request of the service
”Consulting(<”ATM-2 free”, seen>)”. Since B1:C1 has experience regarding to
this stimulus, it responds to the solicitude sent by B2:C1 by sending a FIPAL-
VACL message with the services ”Putting(card)” and ”Putting(password)”, be-
cause this was what B1:C1 learned once it received this stimulus. In response to
its solicitude, B2:C1 receives the message previously described and therefore it
executes the services ”Putting(card)” and ”Putting(password)” from the Touch
set of services. In this moment, B2:C1 starts learning about what is happening,
and as a consequence a knowledge rule is created based on the last stimulus
received as well as on the actions executed until now; B2:C1 uses the Learn-
ing Service component in order to update the knowledge with this new rule,
modifying therefore the FIPAL-KBEL document.

Step3: D2 is in the ATM-1 queue, behind D1; D1 moves towards B2:C1 with
a serious facial gesture and tell him that the ATM he is intended to use (ATM-2)
counts the money but it will not be able to get the cash from the ATM. FIPAL:
As D2 is in the ATM-1 queue, B2:C1 realises that the environment has changed
and then it receives the stimulus: <”new client in ATM-1”, seen>; B2:C1 doesn’t
react to this environment; moreover, the oral message that D1 sends to B2:C1
is captured by the ”Listen()” service with the stimulus: <”ATM does not give
money”, listened>.

Step4: As B1:C1 has learned that cancelling the transaction due to a com-
ment like D1 has done is not good, B2:C1 decides to continue with the trans-
action normally. FIPAL: Due to B2:C1 receives the stimulus <”ATM does not
give money”, listened> and it doesn’t have experience on this respect, it de-
cides to ask for help again following the same action as it is described in the
Step2 and, in this case the sent FIPAL-VACL message contains this solicitude:
”Consulting(<”ATM does not give money”, listened>)”. At this point it is im-
portant to mention that once B1:C1 found the rule that correspond with the
stimulus <”ATM does not give money”, listened>, it realises that this expe-
rience is associated with the services ”Setting(worry)”, ”Putting(cancel)” and
”Putting(options)” but, the results of the two first services are not acceptable.
In this sense, B1:C1 answers with a message which only contains the execution
of the service ”Putting(options)” with the intention to inform to B2:C1 to con-
tinue with the transaction. Once B2:C1 receives the answer it reacts executing
the service ”Putting(options)” following the indications given by B1:C1. At this
point, B2:C1 updates the knowledge with this new knowledge rule, modifying
therefore the FIPAL-KBEL document.

153

Step5: The C1’s transaction was successful and it receives the money from
the ATM-2, so it takes its money and gets out from the ATM room. FIPAL:
B2:C1 receives the stimulus: <”Taking money”, seen>; B2:C1 reacts: 1) ex-
ecuting the service ”Setting(happy)” from Face, and 2) executing the service
”Taking(money)” from Touch; B2:C1 introduces a new knowledge rule and up-
dates its learning. Due to the fact that the final result for C1 was positive, all
the knowledge rules previous the last one and in which the services results are
not setting yet, must be changed in order to set an acceptable value into the
corresponding services results.

6 Discussion

In this paper it is presented FIPAL, a framework designing to follow up the
swindlers’ agents learning process. This framework is based on an open and
flexible architecture, according to the FIPA specifications, that emphasizes on
the swindlers’ agents learning and environment interaction processes.

FIPAL is based on the FIPA architecture as well as on some previous research
made on this direction, such as the design an implementation of a learning
architecture for IVA named IVAL [10][11]. Both IVAL and FIPAL emphasize on
the swindlers’ agents learning process to fulfill not only more human-like agent
behavior but also a more realistic interaction with the environment.

The implementation of the FIPAL architecture, complemented with the FIPAL-
KBEL language, has already been evaluated in different simulations with suc-
cessful results. Based on the evaluation of the model as well as on the results
obtained, we can conclude that FIPAL, starting with an empty knowledge base,
learns from the experience of interacting with the environment. This learning
process is quite similar to human learning process since they are born.

In this paper we have concentrated in describing the way in which FIPAL
agents can communicate or interact among each other to prevent banking frauds
cooperatively. A complete scenario of a real ATM fraud situation was presented
in this paper, in which was possible to verify that an agent, structured with FI-
PAL, not only is capable of learning the modus operandi used by the delinquents
to commit the fraud but also cooperate with other agents which have not learned
yet this particular modus operandi and therefore, both bankers and clients can
be trained to react to this kind of banking frauds in almost real-time.

It is important to point out that FIPAL has not been implemented yet as
final applications but it is part of the future work related to this research.

References

1. Bonasso R. P., Kortenkamp D.: An Intelligent Agent Architecture In Which to
Pursue Robot Learning. In Proc. Workshop on Robot Learning, Rutgers University,
New Brunswick, NJ (1994)

2. Buczak A. L., Cooper D. G., Hofmann M. O.: Evolutionary agent learning. Inter-
national Journal of General Systems, Vol. 35 N 2 (2006) 231–254

154

3. Caicedo A., Thalmann D.: Virtual Humanoids: Let Them Be Autonomous without
Losing Control. In Proc. Fourth International Conference on Computer Graphics
and Artificial Intelligence, Limoges, France (2000)

4. de Vries A: XML framework for concept description and knowledge representation.
Artificial Intelligence; Logic in Computer Science; ACM-class: I.7.2; E.2; H.1.1;
G.2.3; arXiv:cs.AI/0404030 v1 (2004)

5. Foundation for Intelligent Physical Agents: FIPA ACL Message Structure Specifi-
cation. SC00061, Geneva, Switzerland (2002)
http://www.fipa.org/specs/fipa00061/index.html

6. Foundation for Intelligent Physical Agents: FIPA Abstract Architecture Specifica-
tion. SC00001, Geneva, Switzerland (2002)
http://www.fipa.org/specs/fipa00001/index.html

7. Lynden S., Rana O.: LEAF: A FIPA Compliant Software Toolkit for Learn-
ing based MAS. In Proc. First International Joint Conference on Autonomous
Agents and Multi-Agent Systems, AAMAS’02, Bologna, Italy, ACM 1-58113-480-
0/02/0007 (2002)

8. Maher M. L., Smith G. J., Gero J. S.: Design Agents in 3D Virtual Worlds. In
Proc. Workshop on Cognitive Modeling of Agents and Multi-Agent Interactions
(IJCAI) (2003) 92–100

9. Nilsson, N. J.: Teleo-Reactive Programs for Agent Control. Journal of Artificial
Intelligence Research, 1 (1994) 139–158

10. Paletta M., Herrero P.: Learning from an Active Participation in the Battlefield:
A New Web Service Human-based Approach. In Proc. International Workshop on
Agents, Web Services and Ontologies Merging (AWeSOMe’06) in the Second OTM
Federated Conferences and Workshops (OTM 2006), Montpellier, France. LNCS
4277, Springer (2006) 68–77

11. Paletta M., Herrero P.: Banking Frauds: An Agents-Based Training Framework to
Follow-up the Swindlers Learning Process. Special Issue of International Transac-
tions on Systems Science and Applications, Vol. 3, No. 2 (2007) (to be published)

12. Pokahr A., Braubach L., Lamersdorf W.: Jadex: A BDI Reasoning Engine. Mul-
tiagent Systems, Artificial Societies, and Simulated, Organizations International
Book Series, Vol. 15, 10.1007/b137449, ISBN: 978-0-387-24568-3, Springer (2005)
149–174

13. Post E.: Formal reductions of the general Combinatorial Problems. American Jour-
nal of Mathematics 65 (1943) 197–268

14. Rao A. S., Georgeff M. P.: Modeling Rational Agents within a BDI-Architecture. In
Proc. Second International Conference on Principles of Knowledge Representation
and Reasoning, San Mateo, CA, USA, Morgan Kaufmann publishers Inc. (1991)
473–484

15. Soriano F. J., Reyes J., Gómez G., Amo F.: Extending the FIPA Interoperability
Model to Deal with Agent Social Issues. In Proc. 6th. World Multiconference on
Systemics, Cybernetics and Informatics, Orlando, USA (2002)

155

Author Index

Albayrak, Sahin, 43

Baldoni, Matteo, V, 108
Baroglio, Cristina, V, 108
Boella, Guido, 59
Brunkhorst, Ingo, 108

Casella, Giovanni, 124
Chesani, Federico, 27
Cord̀ı, Valentina, 92

da Silva, Douglas
Michaelsen, 19
Deufemia, Vincenzo, 124

Endert, Holger, 43

Genovese, Valerio, 59
Grenna, Roberto, 59

Herrero, Pilar, 140
Hirsch, Benjamin, 43

Küster, Tobias, 43

Marengo, Elisa, 108
Mascardi, Viviana, V, 92
Mello, Paola, 27
Montali, Marco, 27

Padget, Julian, 2
Paletta, Mauricio, 140
Patti, Viviana, 108

Reed, Chris, 76
Rosso, Paolo, 92

Singh, Munindar P., 1
Storari, Sergio, 27

van der Torre, Leendert, 59
van Riemsdijk, M. Birna, 3
Vieira, Renata, 19

Wells, Simon, 76
Wirsing, Martin, 3

156

