
Goal-Oriented and Procedural Service
Orchestration?

A Formal Comparison

M. Birna van Riemsdijk Martin Wirsing

Ludwig-Maximilians-Universität München, Germany
{riemsdijk, wirsing}@pst.ifi.lmu.de

Abstract. Goals form a declarative description of the desired end result
of (part of) an orchestration. A goal-oriented orchestration language is an
orchestration language in which these goals are part of the language. The
advantage of using goals explicitly in the language is added flexibility in
handling failures. In this paper, we investigate how goal-oriented mecha-
nisms for handling failures compare to more standard exception handling
mechanisms, by providing a formally defined translation of programs in
the goal-oriented orchestration language into programs in the procedu-
ral orchestration language, and proving that the procedural orchestration
has the same behavior as the goal-oriented orchestration.

1 Introduction

In the field of agent-oriented programming, there is an increasing amount of
research on the use of goals in agent programming languages (see, e.g., [24, 8, 21,
17, 3, 9, 20]). Goals form a declarative description of the desired end result of the
execution of (part of) a program. They are thus comparable to postconditions
as commonly used in program verification. However, the important difference
between goals and postconditions is that goals, in contrast with postconditions,
are part of the program. A goal-oriented language has language constructs which
express the goal that is to be reached by some part of the program.1

It is generally argued that one of the advantages of the explicit use of goals
in a programming language is added flexibility in handling failures [24, 19, Chap-
ter 5]. The idea is essentially that goals are used to monitor the execution of
statements, or plans in agent terminology. If the execution does not have the
desired result, goals are used to select a different plan. This mechanism is used
recursively, as plans can contain subgoals. The fact that a program and its parts
contain explicit representations of the desired result of their execution thus fa-
cilitates monitoring their execution and taking appropriate measures by trying
alternative courses of action if the execution fails to achieve these results.
? This work has been sponsored by the project SENSORIA, IST-2005-016004.
1 Goal-oriented programming should not be confused with logic programming. While

the latter is in principle purely declarative, goal-oriented programming has both
declarative and procedural features.

Goal-oriented programming is targeted at dynamic domains such as agent-
based systems in which the programmer does not have full control over all aspects
of system behavior, e.g., due to the existence of other agents or environmental
aspects outside control of the agent. In such systems, one always needs to take
into account that things might “go wrong”. In more restricted settings in which
one can prove that a program always fulfills some desired post-condition (per-
haps assuming some generally valid preconditions), goal-oriented programming
is superfluous (apart from possible modeling advantages of using goals). Moni-
toring the execution for goal achievement does not add anything in that case, as
the program was already proven to satisfy the postconditions or goals.

We argue that the domain of service-oriented computing is, like agent-based
systems, a domain well-suited for using goal-oriented techniques (see, e.g., [2,
12, 1, 6] for other proposals for combining agent-oriented and service-oriented
approaches). In the service-oriented systems domain, services are called on the
basis of service descriptions without knowing anything about the internal ar-
chitecture or workings of the service. One will typically not have or be able
to obtain (formal) guarantees that the service behaves as it should. In such a
setting, one will thus always need to take into account that a service does not
behave as expected or desired. Moreover, in such a context it is more natural
than in classical settings to specify alternative plans for reaching a goal. In more
classical settings such as database applications there will typically not be alter-
native ways of reaching a desired result, e.g., in case accessing a database fails. In
service-oriented systems, on the other hand, trying alternative ways of reaching
a goal is more natural. For example, if booking a ticket with Lufthansa did not
succeed, one might try booking a ticket with KLM, or if booking a plane turns
out not to be possible as it is too expensive, one might try booking a train.

To investigate how goal-oriented techniques can be applied in the context
of service-oriented systems, we have proposed an abstract goal-oriented orches-
tration language [23] (Section 3). A natural question that arises, given that we
argue that goal-oriented techniques increase flexibility in handling failures, is
how this kind of failure handling compares to more standard exception handling
mechanisms. The aim of this paper is to answer this question. Our approach
is that we define a procedural orchestration language with an exception han-
dling mechanism inspired by that of WS-BPEL [10] (Section 4). We then show
how a program in the goal-oriented orchestration language can be translated
into a program in the procedural orchestration language that has provably the
same behavior (Section 5). We will argue that the kind of abstractions as used
in the goal-oriented orchestration language are worth considering as language
constructs of an orchestration language, as the programming patterns resulting
from the translation do not increase understandability of the code.

It is important to remark that the orchestration language of [23] is not meant
to be a full-fledged orchestration language. It is based on propositional logic, and
is used to investigate the semantic foundations2 of goal-oriented orchestration

2 “Semantic” is here meant in the sense of “semantics of programming languages”,
not in the sense of “semantic web technology”.

languages. The relative simplicity of propositional logic allows us to focus on the
essential aspects of such a language. This paper contributes to the investigation
of the semantic foundations of goal-oriented orchestration, and hence is also
based on the simple language [23]. We are currently investigating how we can
replace propositional logic by other logics such as description logic, to make the
language more practically useful and to facilitate more extensive experimentation
with it. We refer to [5] for the description of a goal-oriented agent programming
language and platform based on first-order logic rather than propositional logic,
which uses similar goal-oriented techniques as the ones we use in this paper.

Moreover, we remark that this paper addresses the composition of services
using orchestration languages. The idea is that the programmer specifies which
compositions are appropriate, using the constructs of the orchestration language.
At run-time, the orchestration is executed as specified. This is in contrast with
approaches to service composition based on planning (see, e.g., [14]). In the
latter approaches, a composition is generated automatically on the basis of ser-
vice descriptions and a specification of desired behavior. Nevertheless, planning
approaches and programming approaches have many commonalities, and can
sometimes be combined [16].

2 Example: Car Breakdown

In order to illustrate our approach, we use a very simple car breakdown scenario
that is adapted from the automotive case study of the SENSORIA project [25] on
service-oriented computing. We have used a variant of this scenario in [23]. In the
scenario, the car has a diagnostic system which reports a failure, resulting in the
car no longer being drivable. The car is furthermore endowed with orchestration
software that should assist the driver in getting the appropriate support by
calling, e.g., a service to get road side assistance. We assume there are also
services available for calling a taxi, for making garage appointments, for ordering
a tow truck, and for getting technical advice over the phone (this service makes
sure the driver is phoned by the appropriate technical assistant).

Using the goal-oriented orchestration language, one can specify which plan
may be executed for achieving a certain goal, under certain circumstances us-
ing so-called plan selection rules [19]. Plans essentially consist of service calls
(where the goal to be achieved through the service call is passed as a parameter,
possibly together with some additional information), subgoals (which are to be
achieved by selecting an appropriate plan by means of plan selection rules), and
a construct for sequential composition (inspired by the orchestration language
Orc [4]) that can be used for passing along the result of service calls to other
service calls. Services can be called directly by specifying the service name, or
they can be discovered by matching available service descriptions to the goal
of a service call, i.e., through semantic matchmaking. Goals to be achieved are
preceded by an exclamation mark.

In this example, we assume the driver is on his way to work, i.e., he has
“being at work” as its top-level goal. If the car is broken, he may either leave the

car behind and call a taxi (if he is in a hurry and near to his office), or try to get
the car repaired. There are three alternative plans for getting the car repaired:
the driver can repair the car himself with the help of technical support over the
phone (if he is a member of this service and the car is repairable on the spot),
he can get road side assistance, or have the car towed to a garage (if it is not
repairable on the spot). Below, we sketch the corresponding plan selection rules.
Plan selection rules have the form κ | β ⇒ π, which intuitively says that the
plan π can be used to reach goal κ if β is the case.

!atWork | carBroken ∧ hurry ∧ nearOffice ⇒ d(!(taxi ≤ 50 euro)) � monitor(!atWork)
!atWork | carBroken ⇒ !carRepaired � monitor(!atWork)
!carRepaired | memberTS ∧ repOnSpot ⇒ techSupport(symp, !appTA) >x>

notify(x) . . .
!carRepaired | true ⇒ d(locationCar, !roadSideAss) . . .
!carRepaired | ¬repOnSpot ⇒ !appGarage � !appTowTruck . . .

We leave out the plan selection rules for the subgoals !appGarage and
!appTowTruck for reasons of space. It may be the case that multiple plan selec-
tion rules are applicable in a certain situation. For example, if the car is broken
and the driver is in a hurry and near the office, either the first or the second
rule may be applied. In our abstract formal framework, one applicable rule is
selected non-deterministically. However, the framework may be extended with a
preference ordering over the rules. If we assume the first rule is selected, it may
be the case that discovering a taxi service fails (the “d” stands for “discovery”),
e.g., because it was not possible to find a taxi service for less than 50 euro. The
plan is then aborted and the goal of being at work has not been achieved, after
which the other applicable plan selection rule will be tried, i.e., it will be tried to
achieve the subgoal of getting the car repaired. Note that it is thus useful that
multiple plan selection rules are applicable in a certain situation, as another
plan can then be tried if one fails. The monitoring service monitors whether,
e.g., taking a taxi has resulted in the goal of being at work being achieved.

In order to achieve the subgoal of getting the car repaired, one might first
try to repair the car with help of technical support over the phone (passing the
symptoms of the car problem to the service). If contacting the technical support
service is successful, the plan continues by passing along the result to a service
that notifies the secretary of the driver about this. If calling the technical support
service fails, e.g., because it turned out the membership has expired, or the
service could not provide satisfactory support, the plan is aborted and another
plan for reaching the goal of getting the car repaired can be tried. Our goal-
oriented orchestration language tries each alternative plan to achieve a certain
(instance of a) subgoal once, in order to prevent the orchestration from getting
stuck by trying the same plans over and over to reach some subgoal.

A sketch of how this example could be programmed in a procedural orches-
tration language is provided below (we only show the “carRepaired” part).

carRepaired(tried1, tried2, tried3, from) ⇒ if tried1 = false ∧memberTS ∧ repOnSpot
then tried1 := true; x := techSupport(symp, !appTA);

if ¬ach(!appTA) then throw !carRepaired.planFailedExc else notify(x) . . . fi
else if tried2 = false then tried2 := true; d(locationCar, !roadSideAss);

if ¬ach(!roadSideAss) then throw !carRepaired.planFailedExc else . . . fi
else if tried3 = false ∧ ¬repOnSpot

then tried3 := true; appGarage(. . .); appTowTruck(. . .)
else throw from.planFailedExc fi fi fi

!carRepaired.planFailedExc ⇒ carRepaired(tried1, tried2, tried3, from)

The various plan selection rules for achieving a particular goal (!carRepaired in
this case) are combined into one procedure, and subgoals occurring in plans are
translated into procedure calls. After each service call, it is checked whether the
service call was successful in achieving its goal (ach(goal)). If not, an excep-
tion is thrown, as the plan should be aborted in this case. The exception han-
dler for !carRepaired.planFailedExc as specified above calls the procedure “car-
Repaired” recursively, so that another plan can be tried to achieve the goal. We
use the variables triedi to record which plans have already been tried to reach
the goal. If all plans have been tried and/or none are applicable, the exception
from.planFailedExc is thrown which is caught lower down in the procedure call
stack (in the procedure “atWork” in this case, as the procedure for repairing the
car will be called from there, as recorded in the variable from).

We believe the code of this procedural orchestration is less understandable
than the goal-oriented version, and we thus argue that goal-oriented abstractions
are worth considering as language constructs of an orchestration language.3 The
purpose of the rest of this paper is to analyze the failure handling mechanism of
the goal-oriented orchestration language in more detail, and to investigate the
relation between the goal-oriented and procedural orchestration language from
a foundational perspective by showing how an arbitrary goal-oriented orches-
tration can be translated into a procedural orchestration that has provably the
same behavior.

3 Goal-Oriented Orchestration Language

In this section, we present the syntax and informal semantics of our goal-oriented
orchestration language (Section 3.1), and the part of the formal semantics that
is relevant for failure handling (Section 3.2). For reasons of space, we cannot
provide the full semantics. We refer to [23, 22] for more details and explanation.

3 Albeit not necessarily to replace procedural programming constructs, but at least in
addition to them.

3.1 Syntax and Informal Semantics

Most of the ingredients of the goal-oriented orchestration language have already
been introduced informally in Section 2. Here, we provide the full syntax and
introduce the formal notation. A program in the goal-oriented orchestration
language is called an agent, which is formally a tuple 〈σ0, γ0,PS, T 〉. The initial
belief base σ0 represents what the agent believes to be the case in the world
(comparable with the state of a procedural program), and is a consistent set of
propositional formulas [19]. The initial goal base γ0 is the set of top-level goals of
the agent. Goals are deleted from the goal base if they are believed to be achieved
[19] and are typically denoted by κ. A goal can be either an achievement goal !p
(where p is an atom)4, representing that the agent wants to achieve a situation
in which p holds, or a test goal ?p, representing that the agent wants to know
whether p holds. Test goals are to be fulfilled by so-called information providing
services, and achievement goals may be fulfilled by world altering services [13].
PS is a set of plan selection rules, formally denoted as κ | β ⇒ π, where β is a
propositional formula representing a condition on the beliefs that should hold for
the rule to be applicable, and π is a plan. The function T : (BasicAction×Σ) → Σ
is a partial belief update function (where Σ is a set of belief bases) which specifies
the belief update resulting from the execution of (internal) actions by the agent.
This function is introduced as usual [19] for technical convenience.

The formal definition of the syntax of plans is given below, where x is a
variable name.

actφ ::= x | φ b ::= a | κ | snr(actφ, actκ)
actκ ::= x | κ π ::= b | b >x> π

Internal actions are typically denoted by a, and κ represents a subgoal. A service
call has the form snr(actφ, actκ), where sn is the name of the service that is to
be called (which is d if a service is to be discovered), actκ represents the goal that
is to be achieved through calling the service, and actφ is (or should be instan-
tiated with) a propositional formula representing additional information that
forms input to the service. The revision parameter r can be np (non-persistent),
meaning that the result of the service call is not stored in the belief base, or
p (persistent), meaning that the result is stored in the belief base. The result
returned from a basic plan element b is bound to the variable x, which may be
used in the remaining plan π. A plan of the form b � π is used to abbreviate a
plan b >x> π where x does not occur in π.

The mechanism of applying plan selection rules to goals in the goal base or
subgoals in plans is formalized using the notion of a stack. Each element of the
stack represents, broadly speaking, the application of a plan selection rule to
a particular (sub)goal. The initial stack element is created by applying a plan
selection rule to a top-level goal in the goal base, and other stack elements are
created every time a subgoal is encountered in the plan of the top element of a
stack. A stack element has the form (π, κ, PS), where κ is the (sub)goal to which
4 In [23], we used arbitrary propositional formulas for the representation of goals, but

for reasons of simplicity we use atoms here.

the plan selection rule has been applied, π is the plan currently being executed
in order to achieve κ, and PS is the set of plan selection rules that have not yet
been tried in order to achieve κ.

A stack element is popped just after a service call or an action execution if the
goal of the stack element is reached, or it is popped if the goal is unreachable,
meaning that there are no applicable plan selection rules. In the former case
the result of the service call or the part of the belief base that expresses that
the subgoal κ has been reached is returned and all occurrences of x in π are
substituted with this result. The latter case is explained in Section 3.2.

A configuration of a goal-oriented program has the form 〈σ, γ, St,PS, T 〉,
where St is the stack. The initial configuration of an agent 〈σ0, γ0,PS, T 〉 is
〈σ0, γ0, E, PS, T 〉, where E denotes an empty stack. In the transition rules, we
leave out PS and T from configurations for reasons of presentation (and these
do not change during computation).

3.2 Formal Semantics of Failure Handling

The formal semantics of our goal-oriented orchestration language is defined us-
ing a transition system [15]. A transition system for a programming language
consists of a set of axioms and transition rules for deriving transitions for this
language. A transition is a transformation of one configuration into another and
it corresponds to a single computation step. The transition rules specify how to
execute the top element of a stack.

In the goal-oriented orchestration language, a failure is not only caused by
abnormalities in trying to execute some operation, but also by being unsuccessful
in reaching a goal. In particular, if a service is called and returns some result, the
call is only considered to be successful if the goal of the service call is reached
through the result that is returned. That is, even if the service returns a “normal”
or non-exceptional result, the service call can still be regarded as having failed.
Such situations are not unlikely to occur, especially if services are automatically
discovered at run-time. It might, e.g., be the case that the service description
was not accurate, resulting in an unsatisfactory result. These kinds of failures are
typically not considered nor dealt with in more classical programming paradigms,
in which a failure or exception is normally caused by the fact that some operation
could not be executed properly.

Our goal-oriented orchestration language handles failures of service calls by
repeatedly trying to find matching services for a service call (in particular if
services are to be discovered) until the goal of the service call is reached, or
there are no more matching services.5 If the latter happens, the service call has
failed definitively, in which case the plan containing the service call is considered
to have failed and the plan is dropped.

The latter case is specified formally in Definition 1 below. The service call
construct snr(φ, κ′) (we assume variables are instantiated when the service is

5 One might argue that a comprehensive failure handling mechanism should include
compensation, but this is without the scope of this paper.

called) is annotated with a set of service descriptions S which represents ser-
vices that have not yet been called, and the result x0 of the last service call.
In this setting, services are assumed to return a propositional formula that ex-
presses the effect or piece of information resulting from calling a world altering
or information providing service, respectively. The predicate ach(κ, σ, xo) holds
iff the goal κ is achieved with respect to belief base σ and the service call result
x0. In case κ is an achievement goal, it is achieved if the goal follows from the
belief base after it is updated with x0. In case κ is test goal, it is achieved if the
goal or its negation follow from x0. The idea is that the belief base should not be
taken into account when evaluating the achievement of a test goal, as the idea
is that a service is called in order to check whether some piece of information is
accurate. Then it does not matter whether the agent already believes something
about this information. The predicate match(sn(φ, κ), σ, sd) holds iff the service
with service description sd matches with the service call sn(φ, κ), given the belief
base σ.

Definition 1 (plan failure)

¬ach(κ′, σ, xo) ¬∃sd ∈ S : match(sn(φ, κ′), σ, sd)

〈σ, γ, (snr(φ, κ′)[S, xo] >x> π, κ, PS)〉 → 〈σ, γ, (ε, κ, PS)〉

As plans are dropped if something goes wrong (if an internal action cannot be
executed, the plan is dropped as well), the occurrence of an empty plan in a
stack element indicates a failure. It can also be the case that a plan is completely
executed resulting in an empty plan, without occurrence of a problem with an
action execution or service call. However, this also indicates that the plan has
failed to reach the goal of the stack element, as the stack element would have
been popped immediately if its goal would have been reached after an action
execution or service call.

While the handling of failures of service calls is done by trying to call other
matching services, the handling of plan failures is done by using plan selection
rules to select alternative plans for reaching a (sub)goal. This is formally specified
by the transition rule below. Note that a plan selection rule that is applied is
removed from the set of available plan selection rules PS. Moreover, note that
the fact that we store the subgoal that the agent is trying to reach in the stack
elements facilitates the selection of alternative plans to reach this goal. If we
would not have such a representation, it would be more difficult to determine
what to do if something went wrong.

Definition 2 (apply rule after plan failure) Below, PS′ = PS \ {κ′ | β ⇒ π}.

κ | β ⇒ π ∈ PS ¬ach(κ, σ,>) σ |= β

〈σ, γ, (ε, κ, PS)〉 → 〈σ, γ, (π, κ, PS′)〉

If the plan of the top stack element is empty and there are no plan selection rules
applicable to the subgoal κ of this stack element, the subgoal is considered to
have failed definitively. Then, the top element of the stack is popped, and the plan
κ >x> π that contains κ is dropped from the new top element. Consecutively,

the agent can try another plan for reaching the subgoal κ′, or, if there are no
applicable plan selection rules, the stack element with subgoal κ′ is popped as
well, etc.

Definition 3 (subgoal failure)

¬∃(κ | β ⇒ π) ∈ PS : σ |= β

〈σ, γ, (ε, κ, PS).(κ >x> π, κ′, PS′)〉 → 〈σ, γ, (ε, κ′, PS′)〉

4 Procedural Orchestration Language

The main ingredients of our procedural orchestration language are standard
features of procedural languages, i.e., assignment, test, procedure call, and an
exception handling mechanism. The particular instantiations of these features
are tailored towards the translation of the goal-oriented orchestration language
in the procedural orchestration language. Further, the language includes a con-
struct for service calls, similar to the corresponding one in the goal-oriented or-
chestration language. The syntax of statements is formally defined below, where
e is an exception name, x is a variable name, and actφ, actκ as in Section 3.1.

κ ::= ?p | !p
v ::= true | false | φ | κ
t ::= φ? | (x = v)? | ach(actκ, x)? | not t | t ∧ t′

act ::= x | v
exp ::= v | κ(act1, . . . , actn) | snr(actφ, actκ) | base(actκ)
ass ::= x := exp
b ::= a | ass | t | return act | throw e
π ::= b | b; π | π + π′ | while t do π od

The language of procedure names is the same as the language of goals of the goal-
oriented orchestration language (κ). The (global) state of configurations in this
language contains a belief base as also used in the goal-oriented orchestration
language. Additionally, procedures may use local variables, typically denoted
by x. These local variables may have a value v, which is true, false, a string
denoting a formula φ, or a string denoting a procedure name κ. Tests can be
global tests on the belief base φ? (note the difference with test goals ?p, which
can only be fulfilled through service calls), local tests (x = v)? that can be used
for testing the value of a variable, or ach(actκ, x), which tests whether the goal
actκ is achieved with respect to the value of the variable x. Expressions are
values, procedure calls κ(act1, . . . , actn), service calls, or a call to a predefined
function base(actκ), which returns a conjunction of formulas from the belief base
from which actκ follows, or false if κ does not follow. Intuitively, this represents
how κ is achieved. Elementary statements can be actions to change the belief
base (as in the goal-oriented orchestration language), assignments to change the
value of local variables, tests, returning a variable, and throwing an exception.
Composed statements are formed by sequential composition, non-deterministic
choice, or a while construct.

The exception handling mechanism that we use is inspired by the exception
handling mechanism in the service orchestration language WS-BPEL [10]. In
WS-BPEL, exception handlers are associated with a scope of a business process.
If a fault occurs in a scope and the scope contains a matching handler, the
process specified by the handler is executed.6 If there is no handler, the exception
is passed to the enclosing scope. In the context of our procedural language, the
scope is formed by procedures, i.e., each procedure call gives rise to a new scope.
Therefore, we associate exception handlers to procedures, as defined below. A
handler contains the name of the exception that it handles, and a statement that
should be executed if the relevant exception is thrown.

Definition 4 (procedures and exception handlers) A procedure has the form
κ(x1, . . . , xn) ⇒ π. Exception handlers, typically denoted by h, have the form
e.Handler ⇒ π, where e is an exception name. A procedure definition is a proce-
dure accompanied with a possibly empty set of exception handlers, denoted by
[κ ⇒ π,H], where H is a set of exception handlers.

The semantics is defined by means of a transition system. We use stacks to
define the mechanism of calling procedures, analogously to the way this was
done for applying plan selection rules. Each stack element (π, θ, H) corresponds
to a procedure call, where π is the statement that still needs to be executed, θ is a
substitution specifying which values have been assigned to which local variables,
and H is the set of exception handlers of the procedure that was called and for
which the stack element was created. The set of handlers of a stack element does
not change during computation.

A configuration 〈σ, γ, St,P, T 〉 consists of a belief base σ and goal base γ
(together forming the global state), a stack St, a set of procedure definitions P,
and a belief update function T . The goal base is simply a set of data elements, i.e.,
it is a normal data structure that does not have the semantics of its counterpart in
the goal-oriented orchestration language. For reasons of space, we do not explain
nor define aspects having to do with updating of the goal base in this paper.
A program 〈σ0, γ0, π0,P, T 〉 has the initial configuration 〈σ0, γ0, (π0, ∅, ∅),P, T 〉.
Analogously to the goal-oriented orchestration language, we omit the procedure
definitions and the belief update function from configurations in the transition
rules below.

We only show the transition rules for exception handling, for reasons of space.
The semantics of the other constructs is as one would expect, and for formal
details we refer to [22]. The semantics of procedure calls is a simple call-by-value
semantics. The first transition rule below expresses that if an exception e is
thrown from within a stack element, and the stack element contains a handler
e.Handler ⇒ π′ for this exception, then the statement π′ is executed instead of
the statement from which the exception was thrown. If the stack element does
not contain a handler for e, the exception is passed to the stack element one
level lower in the stack.
6 Additionally, WS-BPEL has a compensation mechanism (see also [11]), which is,

however, outside the scope of this paper.

Definition 5 (throwing exceptions)

e.Handler ⇒ π′ ∈ H

〈σ, γ, (throw e; π, θ, H)〉 ; 〈σ, γ, (π′, θ, H)〉

¬∃h′ ∈ H ′ : h′ is of the form e.Handler ⇒ π′′

〈σ, γ, (throw e; π′, θ′, H ′).(π, θ, H)〉 ; 〈σ, γ, (throw e, θ, H)〉

5 Translation and Correctness Result

In this section, we show how the goal-oriented orchestration language can be
translated to a procedural orchestration. This translation shows, first of all, how
goal-oriented orchestration, and in particular its failure handling mechanism,
is related to a more standard procedural orchestration language and its excep-
tion handling mechanism. Moreover, it shows that the programming patterns
resulting from the translation do not increase understandability of the code. As
stated in [7] in a more general context, the problem with programming patterns
is that “they are an obstacle to an understanding of programs for both human
readers and programming-processing programs”.7 We thus argue that the kind
of abstractions as used in the goal-oriented orchestration language are worth
considering as language constructs of an orchestration language. As our proce-
dural orchestration language and WS-BPEL are comparable in the sense that
they have a similar exception handling mechanism, and both are imperative lan-
guages without goal-oriented constructs, we conjecture that an implementation
of goal-oriented orchestration patterns in WS-BPEL will be similarly involved
as in our procedural orchestration language.

In this paper we present the most important parts of the translation, i.e.,
the translation of plan selection rules and the translation of plans. For the full
technical details of the translation, we refer to [22].

Definition 6 (translating plan selection rules) Without loss of generality, as-
sume that variables in the goal-oriented orchestration language are not the re-
served variables triedi. Let PS be a set of plan selection rules. Let PSκ be defined
as {κ | β ⇒ π : κ | β ⇒ π ∈ PS} and let n = |PSκ |. We assume an ordering on
the elements of PSκ as follows: {κ | β1 ⇒ π1, . . . , κ | βn ⇒ πn}. The translation
function t for translating PSκ into one procedure definition is defined as follows.

[κ(tried1, . . . , triedn, from) ⇒
this := κ;
(+1≤i≤n((triedi = false)? ∧ βi?; triedi := true; uκ(πi); [αfail] throw κ.planFailedExc) +
(not

V
1≤i≤n((triedi = false)? ∧ βi?); [αfail] throw from.planFailedExc)),

{κ.planFailedExc.Handler ⇒ xf := κ(tried1, . . . , triedn, from); return xf}]

7 The term “programming patterns” should not be confused with “design patterns”.
While the former are computational in nature, the latter are concerned with software
architecture.

The example in Section 2 already hints at how a translation of a goal-oriented
orchestration into a procedural one might be defined. That is, all plan selection
rules for a certain goal are translated into one procedure that has this goal as
the procedure name. The body of the procedure resulting from the translation
of a set of plan selection rules, broadly speaking, consists of a non-deterministic
choice between the translated plans of the relevant plan selection rules, guarded
by tests on the belief base corresponding with the guards of the plan selection
rules.8 The translation of plans is specified through the function uκ (Definition
7).

Each situation of failure of the goal-oriented orchestration language as an-
alyzed in detail in Section 3.2, corresponds to the throwing of an exception in
the procedural language. That is, we throw a planFailedExc if a plan has been
executed completely, as this means that the goal to be achieved by this plan
was not reached. Further, a planFailedExc is thrown if all plans have been tried
and/or none are applicable (as the belief condition does not hold), corresponding
to subgoal failure (Definition 3). The throwing of an exception in case a service
call fails is specified in Definition 7.

We annotate each planFailedExc with the name of the procedure in which
the exception should be handled. The exception should be handled either in the
procedure κ from which it was thrown (in case another plan should be selected
for achieving the goal of the procedure), or in the procedure from which κ was
first called (as passed to κ through the variable from). The latter case represents
the failure of a subgoal, and it corresponds to the popping of a stack element in
the goal-oriented orchestration language (Definition 3).

We associate with each procedure κ a handler for the exception
κ.planFailedExc. This handler specifies that the procedure should be called re-
cursively with the variables triedi (representing which plans have already been
tried) as parameters. This recursive call makes sure that if a plan fails, another
plan is tried which has not been tried yet (Definition 2).

Note that the programmer thus needs to program the throwing of exceptions
and their handlers explicitly in the procedural orchestration language, while the
identification of situations of failure and the consecutive course of action is part
of the semantics of the goal-oriented orchestration language. The next definition
specifies the function uκ, which translates plans of the bodies of plan selection
rules with head κ into statements of the procedural language. The function is
also used to translate the plan of a stack element with subgoal κ.

Definition 7 (translating plans to statements) We define a function uκ(π)
where κ is the head of the plan selection rule of which the body π is translated,
or the goal of the stack element containing π. Let PSκ′ = {κ′ | β′ ⇒ π′ :
κ′ | β′ ⇒ π′ ∈ PS}, let n′ = | PSκ′ |, let false1,...,n′ be a vector of length
n′ of parameters being the value false, let SO be the set of available service
8 In the example we used if-then-else constructs rather than non-deterministic choice,

but in order to make the translation correct, we need non-deterministic choice to
match the non-determinism of the goal-oriented orchestration language in selecting
plan selection rules.

descriptions, and let sdsn be the service description of the service called for
service call snr(actφ, actκ′).

uκ(κ′ >x> π) = ((ach(κ′)?; x := base(κ′)) +
(not ach(κ′)?; x := κ′(false1,...,n′ , κ))); uκ(π)

uκ(a � π) = a; ((ach(κ)?; x := base(κ); return x) + (not ach(κ)?; uκ(π)))
uκ(snr(actφ, actκ′) >x> π) = x := base(actκ′);

((ach(actκ′ , x); uκ(π)) + (not ach(actκ′ , x)?; S := SO;
while not ach(actκ′ , x) do x := snr(actφ, actκ′);
((x = nomatch)?; throw κ.planFailedExc) +
(not(x = nomatch)?; S := S \ {sdsn}) od);
((ach(κ, x)?; return x) + (not ach(κ, x)?; uκ(π)))

A subgoal κ′ >x> π is translated into a non-deterministic choice, followed by
the translation of π. The non-deterministic choice expresses that if the goal κ′

is already reached before calling the procedure κ′, x gets a value through the
function base(κ′). If κ′ is not yet achieved, the procedure κ′ is called, which
returns a value (a propositional formula) that expresses how κ′ was achieved or
an exception in case κ′ could not be achieved. The actual parameters for the
procedure κ′ are a series of false values, expressing that no plans have yet been
tried to reach κ′, and the last parameter is the subgoal κ, which is the goal to be
reached through execution of the statement uκ(κ′ >x> π) (as we are translating
plan selection rules with head κ). The translation of an action a expresses that
a should be executed, and, depending on whether the goal κ is reached, the
orchestration returns or continues with the execution of uκ(π). The translation
of a service call snr(actφ, actκ′) defines that matching services are called until
actκ′ is reached, or there are no more matching services. If the latter is the case,
a planFailedExc is thrown (corresponding to Definition 1).

Using the translation functions as defined above, we have defined a function v
(see [22] for its definition) for translating agents of the goal-oriented orchestration
language into procedural programs in the procedural orchestration language.
This function v uses the function t of Definition 6 to translate plan selection rules
to procedures. Moreover, an initialization procedure is added, which is called
from the initial statement of the resulting procedural program. The purpose of
the initialization procedure is to initiate the pursuit of goals of the goal base.
Furthermore, the procedure is defined such that the program terminates if the
goal base is empty.

We show, broadly speaking, that an agent in the goal-oriented orchestration
language has the same behavior as its translation in the procedural orchestration
language. We do this by showing that each run of an agent A has a matching
run of agent v(A) and vice versa. A run of A matches a run of v(A), loosely
speaking, if each configuration of the former has a matching configuration in the
latter (in the right order). Each transition in a run of A is matched by a series
of transition in a run of v(A), i.e., not each configuration of a run of v(A) has a
matching configuration in the corresponding run of A.

The definition of when a procedural configuration matches a goal-oriented
configuration is provided by a function z (see [22] for its definition), which trans-

lates a configuration of the procedural orchestration language into a configu-
ration of the goal-oriented language. The function cannot be defined the other
way around, as procedural configurations contain certain implementation details
that do not have a counterpart in goal-oriented configurations. The function z
translates in particular procedural stacks into goal-oriented stacks by translat-
ing statements of stack elements to plans (using the inverse of the function uκ).
The function uses the substitution of stack elements to determine the goal of
the resulting goal-oriented stack element and to determine which plan selection
rules have not yet been tried to reach the goal.

The correctness of the translation is formulated formally below. We refer to
[22] for the proof.

Theorem 1 Let A be a program in the goal-oriented orchestration language
with initial configuration c0 and v(A) the translation of A. Then it holds for any
run c0 → c1 → . . . that there exist indices 0 = p0 < p1 < . . . and configurations
d0, d1, . . . such that d0 ; d1 ; . . . is a run in the procedural orchestration
language, d0 is the initial configuration of v(A), and for all pi with i ≥ 0 it holds
that z(dpi) = ci.

Let P be a program in the procedural orchestration language with initial
configuration d0 such that there is some program A of the goal-oriented orches-
tration language with v(A) = P . Then it holds for any run d0 ; d1 ; . . . that
there exist indices 0 = p0 < p1 < . . . and configurations c0, c1, . . ., such that
c0 → c1 → . . . is a run in the goal-oriented orchestration language, c0 is the
initial configuration of A, and for all pi with i ≥ 0, it holds that z(dpi) = ci.

6 Conclusion

In this paper, we have shown how the goal-oriented orchestration language of
[23] can be correctly translated to a procedural orchestration language. As we
have argued that the failure handling mechanism of the goal-oriented orches-
tration language is one of its main advantages, it is important to investigate
whether a similar mechanism cannot be implemented just as easily in a more
traditional language. As we have shown, however, the translation is non-trivial
and the programming patterns resulting from the translation do not increase un-
derstandability of the code. We thus argue that the kind of abstractions as used
in the goal-oriented orchestration language are worth considering as language
constructs of an orchestration language.

We are currently working on the extension of the goal-oriented orchestration
language towards more practically usable versions, e.g., by making use of descrip-
tion logic instead of propositional logic. This will allow us to experiment with
the language in order to further investigate the usefulness of such a language in
the domain of service orchestration. The usefulness of goal-oriented abstractions
will not only have to be investigated on the level of orchestration languages, but
also on the modeling level. One possible direction for future research is to inves-
tigate whether the KAOS goal-oriented requirements engineering methodology
[18] can be adapted to fit the goal-oriented orchestration language.

References

1. M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella. Interaction
protocols and capabilities: A preliminary report. In Principles and Practice of
Semantic Web Reasoning, 4th International Workshop (PPSWR’06), pages 63–77,
2006.

2. L. Bozzo, V. Mascardi, D. Ancona, and P. Busetta. CooWS: Adaptive BDI agents
meet service-oriented programming. In Proceedings of the IADIS International
Conference WWW/Internet 2005, volume 2, pages 205–209. IADIS Press, 2005.

3. L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal representation for
BDI agent systems. In Programming multiagent systems, second international
workshop (ProMAS’04), volume 3346 of LNAI, pages 44–65. Springer, Berlin, 2005.

4. W. R. Cook and J. Misra. Computation orchestration: A basis for wide-area com-
puting, 2007. To appear in the Journal on Software and System Modeling.

5. M. Dastani, M. B. van Riemsdijk, and J.-J. Ch. Meyer. Programming multi-
agent systems in 3APL. In R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah
Seghrouchni, editors, Multi-Agent Programming: Languages, Platforms and Appli-
cations. Springer, Berlin, 2005.

6. I. Dickinson and M. Wooldridge. Agents are not (just) web services: considering
BDI agents and web services. In Proceedings of the 2005 Workshop on Service-
Oriented Computing and Agent-Based Engineering (SOCABE’2005), Utrecht, The
Netherlands, 2005.

7. M. Felleisen. On the expressive power of programming languages. In N. Jones, edi-
tor, ESOP ’90 3rd European Symposium on Programming, Copenhagen, Denmark,
volume 432, pages 134–151. Springer-Verlag, New York, N.Y., 1990.

8. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent
programming with declarative goals. In Intelligent Agents VI - Proceedings of
the 7th International Workshop on Agent Theories, Architectures, and Languages
(ATAL’2000), Lecture Notes in AI. Springer, Berlin, 2001.

9. J. F. Hübner, R. H. Bordini, and M. Wooldridge. Declarative goal patterns for
AgentSpeak. In Proceedings of the Fifth International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS’06), 2006.

10. M. Juric, P. Sarang, and B. Mathew. Business Process Execution Language for
Web Services 2nd Edition. Packt Publishing, 2006.

11. R. Lucchi and M. Mazzara. A pi-calculus based semantics for WS-BPEL, 2006. To
appear in Journal of Logic and Algebraic Programming (JLAP), Elsevier press.

12. V. Mascardi and G. Casella. Intelligent agents that reason about web services: a
logic programming approach. In Proceedings of the ICLP’06 Workshop Workshop
on Applications of Logic Programming in the Semantic Web and Semantic Web
Services (ALPSWS2006), pages 55–70, 2006.

13. S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web services. IEEE Intelligent
Systems, 16(2):46–53, 2001.

14. M. Pistore, P. Traverso, and P. Bertoli. Automated composition of web services
by planning in asynchronous domains. In Proceedings of the fifth international
conference on automated planning and scheduling (ICAPS’05), pages 2–11, 2005.

15. G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus, 1981.

16. S. Sardina, L. P. de Silva, and L. Padgham. Hierarchical planning in BDI agent
programming languages: A formal approach. In Proceedings of Autonomous Agents
and Multi-Agent Systems (AAMAS’06), pages 1001–1008, Hakodate, Japan, 2006.
ACM Press.

17. J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and avoiding interference
between goals in intelligent agents. In Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI 2003), 2003.

18. A. van Lamsweerde and E. Letier. From object orientation to goal orientation: a
paradigm shift for requirements engineering. In Radical Innovations of Software
and Systems Engineering in the Future: 9th International Workshop (RISSEF’02),
volume 2941 of LNCS, pages 325–340, London, UK, 2004. Springer-Verlag.

19. M. B. van Riemsdijk. Cognitive Agent Programming: A Semantic Approach. PhD
thesis, 2006.

20. M. B. van Riemsdijk, M. Dastani, J.-J. Ch. Meyer, and F. S. de Boer. Goal-oriented
modularity in agent programming. In Proceedings of the fifth international joint
conference on autonomous agents and multiagent systems (AAMAS’06), pages
1271–1278, Hakodate, 2006.

21. M. B. van Riemsdijk, W. van der Hoek, and J.-J. Ch. Meyer. Agent program-
ming in Dribble: from beliefs to goals using plans. In Proceedings of the second
international joint conference on autonomous agents and multiagent systems (AA-
MAS’03), pages 393–400, Melbourne, 2003.

22. M. B. van Riemsdijk and M. Wirsing. Goal-oriented and procedural service orches-
tration: A formal comparison, 2007. http://www.pst.ifi.lmu.de/~riemsdijk/

goalproc.pdf.
23. M. B. van Riemsdijk and M. Wirsing. Using goals for flexible service orchestra-

tion: A first step. In J. Huang, R. Kowalczyk, Z. Maamar, D. Martin, I. Mueller,
S. Stoutenburg, and K. Sycara, editors, Service-Oriented Computing: Agents, Se-
mantics, and Engineering (SOCASE’07), volume 4504 of LNCS, pages 31–48, 2007.

24. M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and proce-
dural goals in intelligent agent systems. In Proceedings of the eighth international
conference on principles of knowledge respresentation and reasoning (KR2002),
Toulouse, 2002.

25. M. Wirsing, A. Clark, S. Gilmore, M. Hölzl, A. Knapp, N. Koch, and A. Schroeder.
Semantic-based development of service-oriented systems. In Formal Techniques for
Networked and Distributed Systems (FORTE’06), volume 4229 of LNCS, pages 24–
45. Springer-Verlag, 2006.

